
String theory lecture - Exercise sheet 5
To be discussed on November 20th

Lecturer: Prof. Arthur Hebecker Head tutor: Dr. Thibaut Coudarchet

The goal of this exercise sheet is to explore further the residual symmetries of the Polyakov
action after imposing flat gauge (the conformal transformations) to motivate the lightcone gauge
quantization. After that we derive the Lorentz generators and compute their commutation rela-
tions. Eventually we compute the anomaly arising in these relations when working in lightcone
gauge.

1 Conformal transformations
a) A conformal Killing vector ϵa satisfies the conformal Killing equation

∇aϵb + ∇bϵa − hab∇cϵc = 0 . (1.1)

Explain what is the effect of a diffeomorphism of the form

ξa → ξ′a = ξa + ϵa(ξ) . (1.2)

What is the relevance of these conformal transformations in string theory1?

b) Show that a conformal Killing vector leads to a conserved current Ja ≡ T abϵb

c) Using lightcone worldsheet coordinates, show that the conformal Killing vectors generate the
transformations

ξ± → ξ′± = ξ± + ϵ±(ξ±) . (1.3)
Note: From this we deduce that the conformal transformations correspond to Diff(S1)2 (right-
moving and left-moving) and we expect the Witt algebra (or Virasoro algebra in the quantum
theory) to arise. Let us explicitly show this in what follows.

d) First compute the following Poisson brackets (denoted [·, ·]PB):

[T±±(τ, σ), Xµ(τ, σ′)]PB . (1.4)

To do this use that T±± = − 1
α′ ∂±X · ∂±X and the equal-time brackets:

[Xµ(τ, σ), Xν(τ, σ′)]PB = [Ẋµ(τ, σ), Ẋν(τ, σ′)]PB = 0 ,

[Xµ(τ, σ), Ẋν(τ, σ′)]PB = 1
T

ηµνδ(σ − σ′) .
(1.5)

1Note that the specific form of the term proportional to the metric in (1.1) is such that the expression is traceless.
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e) From the conserved current we deduce the following conserved charges for the closed string:

Lϵ± = − l

4π2

∫ l

0
dσϵ±(ξ±)T±±(ξ±) . (1.6)

Compute [Lϵ± , Xµ(τ, σ)]PB and conclude that these charges indeed generate the conformal
transformations.

f) Decompose the Killing vector field into Fourier modes

ϵ±(ξ±) =
∑
m∈Z

ϵ±
me2iπmξ±/l , (1.7)

and give an expression for the modes L±
m defined such that

Lϵ± ≡
∑
m∈Z

ϵ±
mL±

m . (1.8)

g) From the result of the previous question, you see that these L±
m are the modes of the energy-

momentum tensor. Compute the brackets [T±±(τ, σ), T±±(τ, σ′)]PB and [L±
m, L±

n ]PB to uncover
the two expected Witt algebras.

Note: The bottom line of this exercise is that we showed that the residual gauge freedom in our
Polyakov action is generated by the Fourier modes of the energy-momentum tensor. This leads to
the idea of lightcone gauge: Imposing the constraint Tab = 0 should be equivalent to further gauge
fix the residual freedom before quantizing. We then expect that, in lightcone gauge quantization,
there will be no constraint to impose and the space of physical states should be easier to obtain.

2 Lorentz generators
One downside of lightcone gauge quantization is the lack of explicit Lorentz invariance. Anomalies
can arise and asking them to vanish constrains the number of dimensions D and the parameter a.
This is what we investigate in this exercise by looking at the Lorentz generators and their algebra.

a) Compute the conserved charges associated with Poincaré invariance of the classical string. To
do this follow these steps:

• Write the Lorentz transformations at the infinitesimal level and show that the two-index
generator is antisymmetric. You can refer to the book by Zwiebach, A First Course in
String Theory, section 8.5.

• Apply Noether theorem to derive the conserved worldsheet current from which you can
express the conserved charges Jµν given by

Jµν = T
∫ l

0
dσ(XµẊν − XνẊµ) . (2.1)

You can refer to section 8.2 of the book by Zwiebach for a reminder of Noether theorem
in field theories.
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b) For the open string with NN boundary conditions, show that one can write

Jµν = lµν + Eµν , (2.2)

with
lµν ≡ xµpν − xνpµ , Eµν ≡ −i

+∞∑
n=1

1
n

(αµ
−nαν

n − αν
−nαµ

n) , (2.3)

where Eµν is written in normal ordered form. Argue why we can safely write Eµν like this
thanks to Jµν being free from ordering ambiguities.

c) Show that the Lorentz algebra is indeed satisfied:

[Jµν , Jρσ] = iηµρJνσ + iηνσJµρ − iηµσJνρ − iηνρJµσ . (2.4)

d) In lightcone gauge the gauge fixing choice is not Lorentz invariant and this implies that a
Lorentz transformation that preserves the gauge condition acts non-linearly on the coordinates
(cf Green-Schwarz-Witten, p97). A consequence of this is that the Lorentz algebra in lightcone
gauge can suffer from anomalies and we need to cancel them for the theory to make sense. One
can argue that the anomaly term takes the form

[J i−, J j−] = − 1
α′(p+)2

+∞∑
m=1

(αi
−mαj

m − αj
−mαi

m)∆m , (2.5)

where ∆m is to be determined. To do that, let us follow Green-Schwarz-Witten, p99 (be careful
though cause I think there are typos in the book):

• Show that [x−, 1/p+] = i/(p+)2 and [xi, Ej] = −iEij, where Ej ≡ p+Ej− (set 2α′ = 1 for
convenience).

• From these commutators, show that you can write

[J i−, J j−] = −(p+)−2Cij with Cij = 2ip+α−
0 Eij − [Ei, Ej] + ipiEj − ipjEi . (2.6)

• From the form of the anomaly in (2.5), show that

⟨0| αk
mCijαl

−m |0⟩ = m2(δikδjl − δjkδil)∆m . (2.7)

• Now we want to compute explicitly ⟨0| αk
mCijαl

−m |0⟩ in order to identify ∆m. First com-
pute the two following useful commutators for m > 0:

[αk
m, Eij] = −iδikαj

m − (i ↔ j) ,

[αk
m, Ej−] = −iδkjα−

m − i
∑
n>0

m

np+ αj
−nαk

m+n + i
∑
n>0

m

np+ αk
m−nαj

n .
(2.8)

Remember that we have

[αi
m, αj

n] = mδijδm+n , [αi
m, α−

n ] = mαi
m+n/p+ . (2.9)
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e) With these commutators you can express ⟨0| αk
mCijαl

−m |0⟩ and identify

∆m = m
26 − D

12 + 2
m

(
D − 2

24 + a
)

, (2.10)

where a is defined like in the lecture (for the open string and with 2α′ = 1):

p+p− = 1
2p2

⊥ + N⊥ + a . (2.11)
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