
String theory lecture - Exercise sheet 3
To be discussed on November 6th

Lecturer: Prof. Arthur Hebecker Head tutor: Dr. Thibaut Coudarchet

The goal of this exercise sheet is to uncover the mode expansions for various types of strings
and boundary conditions. We also reproduce carefully the derivation of the constraints on the first
excited open-string state. Eventually we derive the anomaly term in the Virasoro algebra.

1 Neumann/Dirichlet boundary conditions
As you have seen in the lectures, the equation of motion for the string in light-cone coordinates is
given by

∂+∂−Xµ(σ+, σ−) = 0 , (1.1)
which is solved by

Xµ(σ+, σ−) = Xµ
L(σ+) + Xµ

R(σ−) . (1.2)

a) Derive the mode expansion Xµ
NN(τ, σ) for an open sting with Neumann-Neumann boundary

conditions. To do this, go through the following steps:

• Imposing ∂σXµ
NN(τ, σ)|σ=0 = 0, relate XL and XR.

• Use the other boundary condition at σ = l to deduce that ∂±Xµ
L is periodic with period

2l.
• Deduce that you can Fourier expand with the following conventions:

∂±Xµ
L(ξ±) = π

l

√
α′

2
∑
n∈Z

αµ
ne− πi

l
nσ±

, (1.3)

and integrate to find the mode expansion of Xµ
NN(τ, σ).

b) Follow the same strategy to find Xµ
DD(τ, σ) by imposing Dirichlet boundary conditions at both

σ = 0 and σ = l.

c) Now find Xµ
DN(τ, σ) by imposing a Dirichlet condition at σ = 0 and a Neumann condition at

σ = l.

Note: From all these expansions, one can compute the position of the center of mass and the
total momentum of the string for the different boundary conditions. If you do this, you find in
particular that the NN string is moving with constant velocity while the DD one is not.
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2 Tilt
The various boundary conditions studied in the previous exercise can be chosen independently
for the different Xµ. For the directions with Dirichlet conditions, we interpret this as having the
endpoints of the string being confined on a brane extended along these directions. (Note that
full Neumann conditions can be interpreted as the endpoints being attached to spacetime-filling
branes.) Now consider the boundary term∫

dτ∂σXµδXµ

∣∣∣∣∣
σ = l

σ = 0
= 0 , (2.1)

and restrict to only two spatial directions, µ = 1, 2, for simplicity. Discuss yet another generalisa-
tion of the cases studied so far for which the boundary term vanishes independently at σ = 0 and
σ = l.

3 Antiperidocity
Describe the mode expansion of the antiperiodic boson satisfying

Xµ(τ, σ + l) = −Xµ(τ, σ) . (3.1)

4 First excited level
As you have seen during the lectures, the first excited level for the open string is written like

ξµαµ
−1 |0, p⟩ , (4.1)

with ξµ a polarization vector. Redo carefully the derivation of the L1 constraint on this state.

5 The Virasoro anomaly
The Lm’s satisfy the Virasoro algebra:

[Lm, Ln] = (m − n)Lm+n + A(m)δm+n , (5.1)
where the second term is the anomaly. To compute the anomaly, we follow the steps outlined in
the book by Green, Schwarz and Witten (section 2.2.2).
a) Use the Jacobi identity

[Lm, [Ln, Lk]] + cyclic perm. = 0 , (5.2)
with m + n + k = 0 and then set k = 1 to show that

A(n + 1) = n + 2
n − 1A(n) − 2n + 1

n − 1 A(1) . (5.3)

b) Assuming that A(n) is a polynomial, use the recursion relation to show that A(n) = c1n + c3n
3

with c1, c3 ∈ R.

c) Fix c1 and c3 by computing the value of ⟨0| [Lm, L−m] |0⟩ for a smartly chosen m.
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