
String theory lecture - Exercise sheet 13
To be discussed on January 29th

Lecturer: Prof. Arthur Hebecker Head tutor: Dr. Thibaut Coudarchet

The goal of this exercise sheet is to first manipulate the RNS superstring action in light-cone
coordinates to check its SUSY invariance and make explicit the possibility to have periodic or
anti-periodic boundary conditions for the fermions. In the second exercise, we study the circle
compactification of the bosonic string to discover new stringy effects, anticipate the existence of
T-duality and exhibit the phenomenon of gauge enhancement.

1 RNS superstring action
The superstring action in flat gauge takes the form

S = − 1
4π

∫
d2ξ

( 1
α′∂aX

µ∂aXµ − iψ̄µγa∂aψµ

)
. (1.1)

a) Using the spinor component notation ψ ≡ (ψ−, ψ+)T , show that in light-cone coordinates the
action takes the form you have seen in the lecture (use the same conventions defined there for
the Clifford algebra and the gamma matrices):

S = 1
2π

∫
d2ξ

( 2
α′∂+X

µ∂−Xµ + i(ψµ
−∂+ψ−µ + ψµ

+∂−ψ+µ)
)
. (1.2)

b) The on-shell SUSY transformations are given by√
2
α′ δX

µ = iϵ̄ψµ , δψµ =
√

2
α′

1
2γ

a∂aX
µϵ , (1.3)

with the Majorana spinor ϵ ≡ (ϵ−, ϵ+)T subject to the chiral condition

γbγa∂bϵ = 0 . (1.4)

Fix α′ = 2 for convenience and show that in light-cone coordinates these transformations
become

δXµ = i(ϵ+ψ− − ϵ−ψ+) , δψµ
± = ±ϵ∓∂±X

µ , (1.5)
with the condition

∂+ϵ+ = ∂−ϵ− = 0 . (1.6)

c) It is convenient to define η− ≡ ϵ+ and η+ = −ϵ−. Rewrite the transformations with this
parameter. The transformations parametrized by η+ and η− are completely independent so
that on-shell invariance of the action can be checked separately for both of them. Consider
then the η+ transformation and prove the invariance of the action, on-shell.
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d) Use the Noether trick by replacing η+ by ρη+ and deduce from the variation of the action the
following supercurrent component:

j+ = η+∂+X
µψ+µ , (1.7)

which satisfies ∂−j+ = 0.

e) Vary the action of ψµ
± to show explicitly why periodic and anti-periodic boundary conditions

are allowed (you may assume that δψµ
±|τ=±∞ = 0).

2 Circle compactification
Consider the theory of a massless scalar field ϕ(xM) in d+1 spacetime dimensions. We compactify
the (d+1)th dimension on a circle of radiusR. It means we identify xd ∼= xd+2πR and our spacetime
geometry is R1,d−1 × S1(R). Splitting the spacetime index like M ≡ {µ, d} with µ = 0, . . . , d− 1,
we can exand the field along the compact direction like

ϕ(xM) =
∑
n∈Z

ϕn(xµ) exp
(
inxd

R

)
. (2.1)

a) What are the eigenvalues of the momentum operator in the compact direction?

b) Starting from the equation of motion in d + 1 dimensions, show that from the effective d-
dimensional point of view the modes ϕn(xµ) form an infinite tower of fields with mass-squared
m2 = −pµp

µ = n2

R2 . These modes are called the Kaluza-Klein (KK) modes and n is the KK
number.

c) Now we turn to the string with a target space featuring one compact dimension, such that
Xd ∼= Xd + 2πR along that direction (you can think of it as being the 25th direction in the
bosonic string for example). Argue that the periodicity condition for the closed string (of length
2π) can then be generalized like

Xd(σ + 2π) = Xd(σ) + 2πRw , w ∈ Z . (2.2)

The new integer w is called winding number. Give a geometric interpretation of this number
(you can draw a picture).

d) Recall what is the most general solution of ∂+∂−X
d(σ) = 0 for the closed string by introducing

arbitrary left and right zero modes αd
0 and α̃d

0 (focus on the non-oscillator part and do not
impose any periodicity yet).

e) Impose the periodicity condition (2.2) to find a relation between αd
0 and α̃d

0.

f) Use your knowledge about the KK modes to constrain the center or mass momentum given by
(αd

0 + α̃d
0)/

√
2α′. Now you can fully express αd

0 and α̃d
0 as well as the mode expansion in terms

of the KK and winding numbers.
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g) From the Virasoro constraints (L0 − 1) |phys⟩ = 0 and (L̃0 − 1) |phys⟩ = 0, derive the following
level-matching condition and effective mass-squared in d dimensions

N − Ñ = nw ,

α′m2 = α′
[
n2

R2 + w2R2

α′2

]
+ 2N + 2Ñ − 4 .

(2.3)

h) What happens under the transformation

n ↔ w , R → R′ = α′

R
? (2.4)

Try to gain physical understanding of the situation and derive the value of the radius which is
a fixed point of the transformation. It is called self-dual radius.

i) Let us now look at the spectrum. The ground state with n = w = 0 and no oscillator gives
the usual tachyon with m2 = −4/α′. At the massless level with N = Ñ = 1 and n = w = 0,
write the possible states by acting either with αµ

−1, µ = 0, . . . , d − 1 or with αd
−1 (and their

tilde counterparts). You should find the d-dimensional graviton as well as two d-dimensional
vectors and one scalar. Interpret this.

j) Now we consider the sector with n = w = ±1. The level-matching condition is modified to
N = Ñ + 1. Write the spectrum obtained with Ñ = 0 and N = 1. You should find two vectors
and two scalars, one of each for n = w = 1 and the other for n = w = −1. Express the mass
of these states.

k) You would find another copy of these states by looking at the sector with n = −w = ±1. What
happens to their mass at the self-dual radius defined above? Interpret again.
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