String theory lecture - Exercise sheet 13

To be discussed on January 29^{th}

Lecturer: Prof. Arthur Hebecker

Head tutor: Dr. Thibaut Coudarchet

The goal of this exercise sheet is to first manipulate the RNS superstring action in light-cone coordinates to check its SUSY invariance and make explicit the possibility to have periodic or anti-periodic boundary conditions for the fermions. In the second exercise, we study the circle compactification of the bosonic string to discover new stringy effects, anticipate the existence of T-duality and exhibit the phenomenon of gauge enhancement.

1 RNS superstring action

The superstring action in flat gauge takes the form

$$S = -\frac{1}{4\pi} \int d^2 \xi \left(\frac{1}{\alpha'} \partial_a X^\mu \partial^a X_\mu - i \bar{\psi}^\mu \gamma^a \partial_a \psi_\mu \right) \,. \tag{1.1}$$

a) Using the spinor component notation $\psi \equiv (\psi_{-}, \psi_{+})^{T}$, show that in light-cone coordinates the action takes the form you have seen in the lecture (use the same conventions defined there for the Clifford algebra and the gamma matrices):

$$S = \frac{1}{2\pi} \int d^2 \xi \left(\frac{2}{\alpha'} \partial_+ X^\mu \partial_- X_\mu + i(\psi^\mu_- \partial_+ \psi_{-\mu} + \psi^\mu_+ \partial_- \psi_{+\mu}) \right) \,. \tag{1.2}$$

b) The on-shell SUSY transformations are given by

$$\sqrt{\frac{2}{\alpha'}}\delta X^{\mu} = i\bar{\epsilon}\psi^{\mu}, \qquad \delta\psi^{\mu} = \sqrt{\frac{2}{\alpha'}}\frac{1}{2}\gamma^{a}\partial_{a}X^{\mu}\epsilon, \qquad (1.3)$$

with the Majorana spinor $\epsilon \equiv (\epsilon_{-}, \epsilon_{+})^{T}$ subject to the chiral condition

$$\gamma^b \gamma_a \partial_b \epsilon = 0. \tag{1.4}$$

Fix $\alpha' = 2$ for convenience and show that in light-cone coordinates these transformations become

$$\delta X^{\mu} = i(\epsilon_{+}\psi_{-} - \epsilon_{-}\psi_{+}), \qquad \delta \psi^{\mu}_{\pm} = \pm \epsilon_{\mp}\partial_{\pm}X^{\mu}, \qquad (1.5)$$

with the condition

$$\partial_+ \epsilon_+ = \partial_- \epsilon_- = 0. \tag{1.6}$$

c) It is convenient to define $\eta^- \equiv \epsilon_+$ and $\eta^+ = -\epsilon_-$. Rewrite the transformations with this parameter. The transformations parametrized by η^+ and η^- are completely independent so that on-shell invariance of the action can be checked separately for both of them. Consider then the η^+ transformation and prove the invariance of the action, on-shell.

d) Use the Noether trick by replacing η^+ by $\rho \eta^+$ and deduce from the variation of the action the following supercurrent component:

$$j_{+} = \eta^{+} \partial_{+} X^{\mu} \psi_{+\mu} , \qquad (1.7)$$

which satisfies $\partial_{-}j_{+} = 0$.

e) Vary the action of ψ^{μ}_{\pm} to show explicitly why periodic and anti-periodic boundary conditions are allowed (you may assume that $\delta \psi^{\mu}_{\pm}|_{\tau=\pm\infty} = 0$).

2 Circle compactification

Consider the theory of a massless scalar field $\phi(x^M)$ in d+1 spacetime dimensions. We compactify the $(d+1)^{\text{th}}$ dimension on a circle of radius R. It means we identify $x^d \cong x^d + 2\pi R$ and our spacetime geometry is $\mathbb{R}^{1,d-1} \times S^1(R)$. Splitting the spacetime index like $M \equiv \{\mu, d\}$ with $\mu = 0, \ldots, d-1$, we can exand the field along the compact direction like

$$\phi(x^M) = \sum_{n \in \mathbb{Z}} \phi_n(x^\mu) \exp\left(\frac{inx^d}{R}\right) \,. \tag{2.1}$$

- a) What are the eigenvalues of the momentum operator in the compact direction?
- b) Starting from the equation of motion in d + 1 dimensions, show that from the effective *d*dimensional point of view the modes $\phi_n(x^{\mu})$ form an infinite tower of fields with mass-squared $m^2 = -p_{\mu}p^{\mu} = \frac{n^2}{R^2}$. These modes are called the *Kaluza-Klein (KK) modes* and *n* is the *KK number*.
- c) Now we turn to the string with a target space featuring one compact dimension, such that $X^d \cong X^d + 2\pi R$ along that direction (you can think of it as being the 25th direction in the bosonic string for example). Argue that the periodicity condition for the closed string (of length 2π) can then be generalized like

$$X^{d}(\sigma + 2\pi) = X^{d}(\sigma) + 2\pi Rw, \qquad w \in \mathbb{Z}.$$
(2.2)

The new integer w is called *winding number*. Give a geometric interpretation of this number (you can draw a picture).

- d) Recall what is the most general solution of $\partial_+\partial_-X^d(\sigma) = 0$ for the closed string by introducing arbitrary left and right zero modes α_0^d and $\tilde{\alpha}_0^d$ (focus on the non-oscillator part and do not impose any periodicity yet).
- e) Impose the periodicity condition (2.2) to find a relation between α_0^d and $\tilde{\alpha}_0^d$.
- f) Use your knowledge about the KK modes to constrain the center or mass momentum given by $(\alpha_0^d + \tilde{\alpha}_0^d)/\sqrt{2\alpha'}$. Now you can fully express α_0^d and $\tilde{\alpha}_0^d$ as well as the mode expansion in terms of the KK and winding numbers.

g) From the Virasoro constraints $(L_0 - 1) |\text{phys}\rangle = 0$ and $(\tilde{L}_0 - 1) |\text{phys}\rangle = 0$, derive the following level-matching condition and effective mass-squared in d dimensions

$$N - \tilde{N} = nw,$$

$$\alpha' m^2 = \alpha' \left[\frac{n^2}{R^2} + \frac{w^2 R^2}{\alpha'^2} \right] + 2N + 2\tilde{N} - 4.$$
(2.3)

h) What happens under the transformation

$$n \leftrightarrow w, \qquad R \to R' = \frac{\alpha'}{R}?$$
 (2.4)

Try to gain physical understanding of the situation and derive the value of the radius which is a fixed point of the transformation. It is called *self-dual radius*.

- i) Let us now look at the spectrum. The ground state with n = w = 0 and no oscillator gives the usual tachyon with $m^2 = -4/\alpha'$. At the massless level with $N = \tilde{N} = 1$ and n = w = 0, write the possible states by acting either with α_{-1}^{μ} , $\mu = 0, \ldots, d-1$ or with α_{-1}^{d} (and their tilde counterparts). You should find the *d*-dimensional graviton as well as two *d*-dimensional vectors and one scalar. Interpret this.
- j) Now we consider the sector with $n = w = \pm 1$. The level-matching condition is modified to $N = \tilde{N} + 1$. Write the spectrum obtained with $\tilde{N} = 0$ and N = 1. You should find two vectors and two scalars, one of each for n = w = 1 and the other for n = w = -1. Express the mass of these states.
- k) You would find another copy of these states by looking at the sector with $n = -w = \pm 1$. What happens to their mass at the self-dual radius defined above? Interpret again.