
String theory lecture - Exercise sheet 11
To be discussed on January 15th

Lecturer: Prof. Arthur Hebecker Head tutor: Dr. Thibaut Coudarchet

The goal of this exercise sheet is to the closed-string the one-loop vacuum amplitude. We
prepare our dive into the computation by exploring the moduli space of the torus. After that, we
derive the partition function of the closed string and study its crucial properties by comparing it
with a field theory result. For the derivation of the partition function you can refer to the lecture
notes by Timo Weigand and David Tong that are available on the lecture website.

1 One-loop warm-up: The torus moduli space
Before we evaluate amplitudes at one-loop for the closed string, we need to know how to integrate
over conformally inequivalent metrics on the torus: We need to uncover the torus moduli space.
The torus has by definition the topology of S1 × S1 and is parametrized by

(σ1, σ2) ∼= (σ1, σ2) + 2π(m, n) , m, n ∈ Z . (1.1)

This identification gives rise to a lattice in R2 that describes the torus (see image below).

a) The Riemann-Roch theorem relates the number of metric moduli µ of a Riemann surface to
the number of conformal Killing vectors κ. The theorem states

µ − κ = −3χ . (1.2)

• Argue that the theorem is in agreement with what you know about the sphere S2.
• The torus being simply the product of two circles, guess what its conformal group is and

deduce from the Riemann-Roch theorem that it should have only one complex modulus.

b) We already know (see lecture and exercise sheet 2) that conformal transformations in 2d allow
us to have locally flat space. A non-trivial topology generally prevents the map to flat space
from being well-defined globally but, because χ = 0 for the torus, in this case it is.
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• Defining z ≡ σ1 + iσ2 one can thus reach the metric ds2 = dzdz̄. But in the process, the
original periodicity may be modified to shifts by arbitrary vectors ua and va, a ∈ {1, 2}.
Think of the lattice of the torus defined above to be generated by these two vectors ua and
va instead of 2π(1, 0) and 2π(0, 1). Argue that you can fix ua without loss of generality so
that you are left only with va.

• Define τ ≡ v1 + iv2: This is the complex modulus we were looking for. The torus has a
flat metric but the periodicity involves the modulus. Another way to look at the situation
is to redefine the coordinate z to recover the original periodicities. Do this, and then τ
appears in the metric

ds2 = dzdz̄︸ ︷︷ ︸
τ in periodicties

= |dσ1 + τdσ2|2︸ ︷︷ ︸
orginial periodicities

. (1.3)

c) We have identified the torus complex modulus but it does not mean that any value for τ
corresponds to inequivalent tori. We must get rid of redundancies to uncover the torus moduli
space.

• Show that the transformations

S : τ → τ + 1 , T : τ → −1
τ

, U : τ → τ

τ + 1 , (1.4)

appropriately combined with conformal transformations on z, leave the torus invariant.
• With these transformations (actually with only S and T ) you can generate the action

τ → aτ + b

cτ + d
, where ad − bc = 1 , a, b, c, d ∈ Z . (1.5)

We have already encountered similar sets of transformations. What group does it corre-
spond to (remember to mod out by the transformation (a, b, c, d) → (−a, −b, −c, −d))?

d) Now that we know the invariance group of the torus, we can describe the sets of values that
really describe inequivalent tori and they correspond to the moduli space of the torus. Use the
S and T transformations to show that any τ in the upper-half plane can be brought to the
fundamental domain F (the lower-half plane is obviously redundant):

F ≡
{

τ ∈ C , −1
2 ≤ Re τ ≤ 1

2 , |τ | ≥ 1
}

. (1.6)

Represent F graphically with proper identifications of its boundaries.

2 The partition function for closed strings
a) In this exercise we want to compute the simplest one-loop amplitude ZT 2 , i.e. without any

operator insertion. The amplitude involves an integration over the torus moduli space and
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we first need to set a proper integration measure. One needs the notion of distance between
metrics on a manifold M which in general takes the form

ds2
metric ≡

∫
M

√
det hδhabδhcdhbchda . (2.1)

Specialized to the torus case we have

ds2
metric =

∫
T 2

√
det hTr

(
∂τ hh−1∂τ̄ hh−1

)
dτdτ̄ . (2.2)

With the metric on the torus uncovered in the previous exercise, compute this to show that
(ignoring prefactors)

ds2
metric ∼ dτdτ̄

τ2
. (2.3)

b) The one-loop vacuum amplitude thus takes the following form:

ZT 2 ∼
∫

F

d2τ

τ2
⟨1⟩τ,⊗D

i=1Xi · ⟨ghost insertions⟩τ,bc ≡
∫

F

d2τ

τ2
Z(τ) · ⟨ghost insertions⟩τ,bc . (2.4)

We will focus on the X-CFT piece Z(τ) ≡ ⟨1⟩τ,⊗D
i=1Xi and simply give the result later for the

contribution of the bc-CFT.
Note: It is actually very subtle how to compute properly the vacuum amplitude. Indeed, when
there are not enough insertion points, the generic amplitude formula that you have seen in the
lecture cannot be applied directly. In addition to carefully writing the moduli space metric when
integrating, one should also properly write the conformal Killing group volume and properly
compute the “ghost volume”. Altogether, these effects produce a total τ2-dependent factor
which turns out to be the 1/τ2 that we already have now in (2.4). We thus trust that no
further subtle τ2 factors will arise.
Assume first a rectangular torus, i.e. τ = iτ2, and interpret the path integral

∫
DXe−SX as

follows: Start from the vacuum, create a state, evolve it by Euclidean time 2πτ2 with the
Hamiltonian H, identify in- and out-state, sum over states. Translate this into a formula and
interpret it as a partition function.

c) Now consider the generic case τ = τ1 + iτ2. As seen in the previous exercise, this corresponds to
a tilt in the torus lattice. Thus, interpret the presence of τ1 as a spatial translation implemented
by a translation operator P before looping back and modify the formula for Z(τ) accordingly.

d) The Hamiltonian on the cylinder and the translation operator are given by

H = 2π

l
(L0 + L̄0 − c + c̄

24 ) , P = 2π

l
(L0 − L̄0) . (2.5)

Fix l = 2π and focus on only one direction with c = c̄ = 1 to find

Z(τ)(1) = Tr qL
(1)
0 −1/24q̄L̄

(1)
0 −1/24 , with q ≡ e2iπτ . (2.6)

The superscript (1) simply denotes that we only consider one dimension.
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e) Using
L

(1)
0 = α′

4 p2 + N (1) , L̄
(1)
0 = α′

4 p2 + N̄ (1) , (2.7)

Split the trace into a momentum integral and a trace denoted Tr′ which amounts to sum only
over oscillators to obtain

Z(τ)(1) = V1(qq̄)− 1
24

∫ dp

2π
e−πτ2α′p2Tr′ qN(1)

q̄N̄(1)
, (2.8)

where V1 ≡ δ(p − p) is the spacetime volume for one direction.

f) Evaluate the trace and compute the Gaussian integral to get

Z(τ)(1) = V1
1√

4π2α′τ2

1
(qq̄)1/24

∞∏
n=1

1
1 − qn

∞∏
n=1

1
1 − q̄n

. (2.9)

g) Combine the contributions from the 26 dimensions and use the fact that the ghost part yields
a factor |η(τ)|4 to obtain

Zτ2 ∼ iV26

∫
F

d2τ

τ2
(4π2α′τ2)−13|η(τ)|−48 , (2.10)

where the Dedekind η function is defined as

η(τ) ≡ q
1

24

∞∏
n=1

(1 − qn) . (2.11)

What is the net effect of the ghosts?
Note for later that if we keep the trace and take the ghosts into account we can write

ZT 2 = iVD

∫
F

d2τ

τ2
(4π2α′τ2)− D

2
1
qq̄

Tr′ qN⊥ q̄N̄⊥ , (2.12)

where N⊥ counts the transverse oscillators.

h) Check the modular invariance of the partition function, i.e. invariance under PSL(2,Z). To
do this use the following modular properties of the Dedekind function:

η(−1
τ

) = (−iτ) 1
2 η(τ) , η(τ + 1) = ei π

12 η(τ) . (2.13)

i) To emphasize some key properties of the partition function, let us compare it with its field
theory counterpart. Consider a free massive scalar field ϕ with mass m in D dimensions.
Recall that the ϕ path integral gives

Z ≡
∫

Dϕ exp
(

−1
2

∫
dDxϕ(−∂2 + m2)ϕ

)
= exp

(
−VD

2

∫ dDp

(2π)D
ln
[1
2(p2 + m2)

])
. (2.14)
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j) From this we extract the vacuum amplitude ZS1 for a single particle, analogue to our torus
partition function:

ZS1 = −VD

2

∫ dDp

(2π)D
ln
[1
2(p2 + m2)

]
. (2.15)

Using the Schwinger parametrization

1
x

=
∫

dle−lx =⇒ − ln(x) =
∫ +∞

0
dl

e−xl

l
, (2.16)

we get

ZS1 = VD

∫ dDp

(2π)D

∫ +∞

0

dl

2l
e− 1

2 (p2+m2)l . (2.17)

But doing this manipulation, the UV divergence at high p has been mapped to a divergence
at small l. Interpret the different elements in this formula in a way analogous to our string
computation. In particular, what are the roles of 1

2(p2 + m2), l in the exponential and
∫+∞

0
dl
2l

?

k) Perform the p integral and take into account an infinite spectrum like we have in string theory
by introducing a trace to get

ZS1 = iVD

∫ +∞

0

dl

2l1+ D
2

(2π)− D
2 Tr′ e−m2l/2 . (2.18)

l) For the strings we have

m2 = 2
α′ (N⊥ + N̄⊥ − 2) , N⊥ = N̄⊥ . (2.19)

To match the partition function with the string expression, implement the level-matching by
introducing

δL0,L̄0 =
∫ 1

2

− 1
2

dse2iπs(N⊥−N̄⊥) . (2.20)

and define τ ≡ s + 2li
α′ . You should get

ZS1 = iVD

∫
strip

d2τ

4τ2
(4π2α′τ2)− D

2
1
qq̄

Tr′ qN⊥ q̄N̄⊥ . (2.21)

This is exactly what we had for the string, with the crucial difference that the integration is
over the strip {τ ∈ C , τ2 ≥ 0 , |τ1| ≤ 1

2}.

m) Draw the strip and the fundamental domain on a same graphic. What happens to the partition
function when τ2 → 0? Conclude about the uttermost importance of modular invariance in
string theory.
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