
String theory lecture - Exercise sheet 10
To be discussed on January 8th

Lecturer: Prof. Arthur Hebecker Head tutor: Dr. Thibaut Coudarchet

The goal of this exercise sheet is to first study the group of globally well-defined conformal
transformations on the sphere and in particular the property allowing to map any distinct three
points to any other distinct three points. We then explore in detail the Gaussian integral involved
in the tree-level scattering of n closed-string tachyons. Eventually, we manipulate the Virasoro-
Shapiro amplitude to prove that it can be nicely rewritten as you have seen in the lecture with
Euler functions.

1 Conformal transformations on the sphere
The special conformal transformations that you have seen in the lecture can have zeroes in the de-
nominator. This is why it is important to distinguish between the group of inifinitesimal conformal
transformations that you are used to and the group of globally defined conformal diffeomorphisms.
This global group depends on the topology of the space under consideration and we focus here on
the 2d sphere S2 ∼= C ∪ ∞.

a) The generators of the infinitesimal conformal transformations are

ln = −zn+1∂z , l̄n = −z̄n+1∂z̄ , for n ∈ Z . (1.1)

Analyse the behaviour of ln at z = 0 and z = ∞ to deduce which generators are globally well
defined. Conclude that the group of finite conformal diffeomorphisms on S2 is generated by
l−1, l0, l1 and l̄−1, l̄0, l̄1.

b) l−1 = −∂z generates the rigid translations z → z + b, b ∈ C while l0 = −z∂z generates the
complex dilatations z → az, a ∈ C. Go to polar coordinates z = reiφ and give the geometric
interpretation of l0 + l̄0 and i(l0 − l̄0).

c) Show that in complex coordinates the 2d special conformal transformation with parameter
b ≡ (−c, 0) acts as follows:

xi → xi − x2bi

1 − 2b · x + b2x2 ⇐⇒ z → z

cz + 1 . (1.2)

It is then easy to see that l1 = −z2∂z generates these special conformal transformations. All
in all the globally defined conformal transformations can be written

z → az + b

cz + d
, a, b, c, d ∈ C . (1.3)

Invertibility enforces ad − bc ̸= 0 and we can rescale to restrict to ad − bc = 1. The complex
2 × 2 matrix formed by a, b, c and d is thus a special linear matrix, i.e. an element of SL(2,C).
The matrix formed from (−a, −b, −c, −d) gives the same transformation so that the group of
conformal diffeomorphisms on S2 is SL(2,C)/Z2 ≡ PSL(2,C).
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d) Consider the map

z → z′ = (b − c)(z − a)
(b − a)(z − c) , a, b, c, d ∈ C . (1.4)

Show that this defines, up to an overall rescaling, an SL(2,C) transformation provided a, b
and c are pairwise distinct. To what points are z = a, z = b and z = c mapped to?

e) Conclude that any distinct three points on the sphere can be mapped to any other distinct
three points.

2 Tree-level n-point tachyon scattering
In this exercise we explore in some detail the Gaussian integral involved in the tree-level amplitude
An(k1, . . . , kn) for the scattering of n closed string tachyons propagating in D dimensions. We want
to show that

An(k1, . . . , kn) =
〈

n∏
j=1

: eikj ·X(zj ,z̄j) :
〉

∝ δ(D)

 n∑
j=1

kj

∏
j<l

|zj − zl|α
′kj ·kl . (2.1)

In the lecture, you sketched the derivation for the Virasoro-Shapiro amplitude involving four
tachyons.

a) Show that to evaluate the amplitude we are led to consider the following Gaussian integral

Z[J ] ≡
∫

DX exp
[∫

C
dzdz̄

( 1
2πα′ X · ∂∂̄X + iJ · X

)]
, (2.2)

with the source J given by

Jµ(z, z̄) ≡
n∑

j=1
kµ

j δ(2)(z − zj, z̄ − z̄j) . (2.3)

Note: For this integral to make sense, we have to think to have performed a Wick rotation on
spacetime also. It is the combined worldsheet Wick rotation and the spacetime one that make
the oscillatory integral convergent.

b) We expand the fields into eigenmodes XI(z, z̄) of the Laplacian ∂∂̄:

∂∂̄XI(z, z̄) = −ω2
I XI(z, z̄) . (2.4)

These eigenmodes form a complete set such that we have

Xµ(z, z̄) =
∑

I

xµ
I XI(z, z̄) ,

∫
C

dzdz̄XI(z, z̄)XI′(z, z̄) = δII′ ,

xµ
I =

∫
C

dzdz̄Xµ(z, z̄)XI(z, z̄) ,
∑

I

XI(z, z̄)XI(z′, z̄′) = δ(2)(z − z′, z̄ − z̄′) .
(2.5)
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Use this decomposition of the fields and these properties to write

Z[J ] =
∏
I,µ

∫
dxµ

I exp
(

− w2
I

2πα′ x
µ
I xI,µ + ixµ

I JI,µ

)
, (2.6)

where
Jµ

I ≡
∫
C

dzdz̄Jµ(z, z̄)XI(z, z̄) . (2.7)

c) Separate the zero mode I = 0 with ω0 = 0 from the non-zero modes I ̸= 0 and evaluate the
integrals to find

Z[J ] = i(2π)Dδ(D)(J0)
∏
I ̸=0

(
2π2α′

ω2
I

)D
2

exp
(

−πα′Jµ
I JI,µ

2ω2
I

)
. (2.8)

In agreement with the note above, this is perfectly consistent to make the integral convergent
by Wick rotating x0

I .

d) Express the product as a determinant det′ which excludes zero modes and insert the definition
of Jµ

I to get

Z[J ] = i(2π)Dδ(D)(J0) det′
(

− ∂∂̄

2π2α′

)− D
2

exp
(

−1
2

∫
C

dzdz̄dz′dz̄′J(z, z̄) · J(z′, z̄′)G′(z, z̄, z′, z̄′)
)

,

(2.9)
with

G′(z, z̄, z′, z̄′) ≡
∑
I ̸=0

πα′

ω2
I

XI(z, z̄)XI(z′, z̄′) . (2.10)

e) Show that
− 1

πα′ ∂∂̄G′(z, z̄, z′, z̄′) = δ(2)(z − z′, z̄ − z̄′) − X2
0 , (2.11)

From now on we accept that the effect of X2
0 is to remove the contractions at zi = zj so

we ignore it beyond this fact and we continue with the Green’s function G(z, z̄, z′, z̄′) (see
Polchinski sect. 6.2 for more details). Argue from the previous exercise sheet that we have then

G(z, z̄, z′, z̄′) = −α′

2 ln(|z − z′|2) . (2.12)

f) Bring everything together to write

An(k1, . . . , kn) = i(2π)Dδ(D)

 n∑
j=1

kj

 det′
(

− ∂∂̄

2π2α′

)− D
2 n∏

j<l

|zj − zl|α
′kj ·kl

∝ δ(D)

 n∑
j=1

kj

 n∏
j<l

|zj − zl|α
′kj ·kl .

(2.13)
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3 � Gamma gamma gamma (a man after midnight)�
You have seen in the lecture that the full Virasoro-Shapiro amplitude (whose piece coming from
the X fields correspond to the result of the previous exercise in the case of four tachyon insertions)
takes the form

ig2
s CS2(2π)26δ(26)

( 4∑
i=1

ki

)∫
d2z|z|−

α′
2 u−4|1 − z|−

α′
2 t−4 . (3.1)

As in the lecture we define C(a, b) ≡
∫

d2z|z|2a−2|1 − z|2b−2 and we want to show that

C(a, b) = 2πΓ(a)Γ(b)Γ(c)
Γ(1 − a)Γ(1 − b)Γ(1 − c) , c ≡ 1 − a − b . (3.2)

a) From the definition of the Euler function

Γ(z) ≡
∫ +∞

0
dttz−1e−t , (3.3)

show that you can write

|z|2a−2 = 1
Γ(1 − a)

∫ +∞

0
dtt−ae−|z|2t , and |1 − z|2b−2 = 1

Γ(1 − b)

∫ +∞

0
duu−be−|1−z|2u . (3.4)

b) Insert this in C(a, b), decompose the complex coordinate z = x + iy and compute the integral
over x and y. You should find

C(a, b) = 2π

Γ(1 − a)Γ(1 − b)

∫ +∞

0
dtdu

t−au−b

t + u
e−tu/(t+u) . (3.5)

c) Change variables to t ≡ αβ and u ≡ (1 − β)α with α ∈ [0, +∞) and β ∈ [0, 1]. Recognize a
Euler function in the integral over α and write 1 − a − b = c to get

C(a, b) = 2πΓ(c)
Γ(1 − a)Γ(1 − b)

∫ 1

0
dβ(1 − β)a−1βb−1 ≡ 2πΓ(c)

Γ(1 − a)Γ(1 − b)B(b, a) . (3.6)

where B is the Euler beta function.

d) Show that B(x, y) = Γ(x)Γ(y)
Γ(x+y) . To do this follow these steps:

• Write
Γ(x)Γ(y) =

∫ +∞

0
du
∫ +∞

0
dve−uux−1e−vvy−1 , (3.7)

change variables to u ≡ s2, v ≡ t2 and extend the integrals to the whole real line.
• Go to polar coordinates s = r cos θ, t = r sin θ and recognize Γ(x + y) and B(x, y) to

conclude.
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