Spontaneous dark-matter mass generation along cosmological attractors in string theory

Thibaut Coudarchet¹, Lucien Heurtier² and Hervé Partouche¹ [arXiv:1812.10134]

June 25, 2019

¹Centre de physique théorique, École Polytechnique and CNRS
 ² Department of Physics, University of Arizona

Table of contents

- 1. Introduction: Standard dark-matter freeze-out scenario
- 2. String theory setup
- 3. Relic density evolution
- 4. Conclusions

Introduction: Standard dark-matter freeze-out scenario

- equilibrium through interactions $\mathsf{DM} + \mathsf{DM} \to \mathsf{SM} + \mathsf{SM}$
- dilution because of the universe expansion which slows the reaction

- equilibrium through interactions $\mathsf{DM} + \mathsf{DM} \to \mathsf{SM} + \mathsf{SM}$
- dilution because of the universe expansion which slows the reaction

- equilibrium through interactions $\mathsf{DM} + \mathsf{DM} \to \mathsf{SM} + \mathsf{SM}$
- dilution because of the universe expansion which slows the reaction

$$\frac{\mathrm{d}n_{\mathrm{DM}}}{\mathrm{d}t} + \underbrace{(d-1)Hn_{\mathrm{DM}}}_{\text{dilution}} = -\langle \sigma_{\mathrm{DM}\leftrightarrow\mathrm{SM}}v\rangle \left[n_{\mathrm{DM}}^2 - n_{\mathrm{DM,eq}}^2\right]$$

- equilibrium through interactions $\mathsf{DM} + \mathsf{DM} \to \mathsf{SM} + \mathsf{SM}$
- dilution because of the universe expansion which slows the reaction

$$\frac{\mathrm{d}n_{\mathrm{DM}}}{\mathrm{d}t} + (d-1)Hn_{\mathrm{DM}} = -\underbrace{\langle \sigma_{\mathrm{DM}\leftrightarrow\mathrm{SM}}v \rangle}_{\text{annhilation rate}} \begin{bmatrix} n_{\mathrm{DM}}^2 - n_{\mathrm{DM,eq}}^2 \end{bmatrix}$$

- equilibrium through interactions $\mathsf{DM} + \mathsf{DM} \to \mathsf{SM} + \mathsf{SM}$
- dilution because of the universe expansion which slows the reaction

$$\frac{\mathrm{d}n_{\mathrm{DM}}}{\mathrm{d}t} + (d-1)Hn_{\mathrm{DM}} = -\langle \sigma_{\mathrm{DM}\leftrightarrow\mathrm{SM}}v\rangle \underbrace{\left[n_{\mathrm{DM}}^2 - n_{\mathrm{DM},\mathrm{eq}}^2\right]}_{\text{distance from equilibrium}}$$

- equilibrium through interactions $\mathsf{DM} + \mathsf{DM} \to \mathsf{SM} + \mathsf{SM}$
- dilution because of the universe expansion which slows the reaction

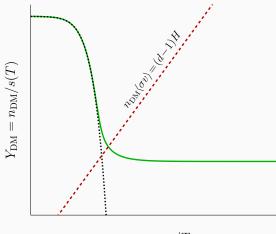
Boltzmann equation in d dimensions

$$\frac{\mathrm{d}n_{\mathrm{DM}}}{\mathrm{d}t} + (d-1)Hn_{\mathrm{DM}} = -\langle \sigma_{\mathrm{DM}\leftrightarrow\mathrm{SM}}v\rangle \underbrace{\left[n_{\mathrm{DM}}^2 - n_{\mathrm{DM},\mathrm{eq}}^2\right]}_{\text{distance from equilibrium}}$$

The yield

$$Y_{\rm DM} = n_{\rm DM}(T) imes volume$$

Freeze-out



 $x = m_{\rm DM}/T$

String theory setup

$E_8 \times E_8$ heterotic string at finite temperature with spontaneously supersymmetry (SUSY) breaking

- \bullet compute the one-loop free energy density, ${\cal F}$
- through the cosmological evolution: a modulus *R_d* first stabilized and then destabilized from self-dual point
- states initially massless acquire a mass

$$\rightarrow |R_d - 1/R_d|$$

• these states could play the role of dark matter (DM)

T drops below $m_{\rm DM} \longleftrightarrow m_{\rm DM}$ jumps above T

 $E_8 \times E_8$ heterotic string at finite temperature with spontaneously supersymmetry (SUSY) breaking

- \bullet compute the one-loop free energy density, ${\cal F}$
- through the cosmological evolution: a modulus R_d first stabilized and then destabilized from self-dual point
- states initially massless acquire a mass

$$\rightarrow |R_d - 1/R_d|$$

• these states could play the role of dark matter (DM)

T drops below $m_{\text{DM}} \longleftrightarrow m_{\text{DM}}$ jumps above T

 $E_8 \times E_8$ heterotic string at finite temperature with spontaneously supersymmetry (SUSY) breaking

- \bullet compute the one-loop free energy density, ${\cal F}$
- through the cosmological evolution: a modulus R_d first stabilized and then destabilized from self-dual point
- states initially massless acquire a mass

$$\rightarrow |R_d - 1/R_d|$$

• these states could play the role of dark matter (DM)

T drops below $m_{\text{DM}} \longleftrightarrow m_{\text{DM}}$ jumps above T

 $E_8 \times E_8$ heterotic string at finite temperature with spontaneously supersymmetry (SUSY) breaking

- \bullet compute the one-loop free energy density, ${\cal F}$
- through the cosmological evolution: a modulus R_d first stabilized and then destabilized from self-dual point
- states initially massless acquire a mass

$$\rightarrow |R_d - 1/R_d|$$

• these states could play the role of dark matter (DM)

T drops below $m_{\text{DM}} \longleftrightarrow m_{\text{DM}}$ jumps above T

 $S^1_E(R_0) imes \mathbb{R}^{d-1} imes T^2 imes T^{8-d}$

- $S_E^1(R_0)$: compactified euclidean time, temperature $T = \frac{1}{2\pi R_0}$
- \mathbb{R}^{d-1} : together with time, *d*-dimensional spacetime
- T^2 : torus with R_d and the Scherk-Schwarz radius R_9 , SUSY breaking scale $M = \frac{1}{2\pi R_9}$
- \mathcal{T}^{8-d} : rest of the internal space, volume ~ 1 in string units

$$(G+B)_{ij} = \begin{pmatrix} R_d^2 & \epsilon \\ -\epsilon & 4R_9^2 \end{pmatrix}, \quad i,j \in \{d,9\}, \ \epsilon \in \mathbb{Z}$$

$$\rightarrow \text{SUSY}, \ SU(2) \text{ enhancement at } R_d = 1$$

$$\rightarrow \text{SUSY}, \ (-1)^{\epsilon} = 0 \rightarrow SU(2)$$

$$(-1)^{\epsilon} = 1 \rightarrow 2 \text{ fermions in } U(1)$$

 $S^1_E(R_0) imes \mathbb{R}^{d-1} imes T^2 imes T^{8-d}$

- $S_E^1(R_0)$: compactified euclidean time, temperature $T = \frac{1}{2\pi R_0}$
- \mathbb{R}^{d-1} : together with time, *d*-dimensional spacetime
- T^2 : torus with R_d and the Scherk-Schwarz radius R_9 , SUSY breaking scale $M = \frac{1}{2\pi R_9}$
- \mathcal{T}^{8-d} : rest of the internal space, volume ~ 1 in string units

$$(G+B)_{ij} = \begin{pmatrix} R_d^2 & \epsilon \\ -\epsilon & 4R_9^2 \end{pmatrix}, \quad i,j \in \{d,9\}, \ \epsilon \in \mathbb{Z}$$

$$\rightarrow \text{SUSY}, \ SU(2) \text{ enhancement at } R_d = 1$$

$$\rightarrow \text{SUSY}, \ (-1)^{\epsilon} = 0 \rightarrow SU(2)$$

$$(-1)^{\epsilon} = 1 \rightarrow 2 \text{ fermions in } U(1)$$

 $S^1_E(R_0) imes \mathbb{R}^{d-1} imes T^2 imes T^{8-d}$

- $S_E^1(R_0)$: compactified euclidean time, temperature $T = \frac{1}{2\pi R_0}$
- \mathbb{R}^{d-1} : together with time, *d*-dimensional spacetime
- T^2 : torus with R_d and the Scherk-Schwarz radius R_9 , SUSY breaking scale $M = \frac{1}{2\pi R_9}$
- \mathcal{T}^{8-d} : rest of the internal space, volume ~ 1 in string units

$$(G+B)_{ij} = \begin{pmatrix} R_d^2 & \epsilon \\ -\epsilon & 4R_9^2 \end{pmatrix}, \quad i,j \in \{d,9\}, \ \epsilon \in \mathbb{Z}$$

$$\rightarrow \text{SUSY}, \ SU(2) \text{ enhancement at } R_d = 1$$

$$\rightarrow \text{SUSY}, \ (-1)^{\epsilon} = 0 \rightarrow SU(2)$$

$$(-1)^{\epsilon} = 1 \rightarrow 2 \text{ fermions in } U(1)$$

 $S^1_E(R_0) imes \mathbb{R}^{d-1} imes T^2 imes T^{8-d}$

- $S_E^1(R_0)$: compactified euclidean time, temperature $T = \frac{1}{2\pi R_0}$
- \mathbb{R}^{d-1} : together with time, *d*-dimensional spacetime
- T^2 : torus with R_d and the Scherk-Schwarz radius R_9 , SUSY breaking scale $M = \frac{1}{2\pi R_9}$
- \mathcal{T}^{8-d} : rest of the internal space, volume ~ 1 in string units

$$(G+B)_{ij} = \begin{pmatrix} R_d^2 & \epsilon \\ -\epsilon & 4R_9^2 \end{pmatrix}, \quad i,j \in \{d,9\}, \ \epsilon \in \mathbb{Z}$$

$$\rightarrow \text{SUSY}, \ SU(2) \text{ enhancement at } R_d = 1$$

$$\rightarrow \text{SUSY}, \ (-1)^{\epsilon} = 0 \rightarrow SU(2)$$

$$(-1)^{\epsilon} = 1 \rightarrow 2 \text{ fermions in } U(1)$$

 $S^1_E(R_0) imes \mathbb{R}^{d-1} imes T^2 imes T^{8-d}$

- $S_E^1(R_0)$: compactified euclidean time, temperature $T = \frac{1}{2\pi R_0}$
- \mathbb{R}^{d-1} : together with time, *d*-dimensional spacetime
- T^2 : torus with R_d and the Scherk-Schwarz radius R_9 , SUSY breaking scale $M = \frac{1}{2\pi R_9}$
- \mathcal{T}^{8-d} : rest of the internal space, volume ~ 1 in string units

$$(G+B)_{ij} = \begin{pmatrix} R_d^2 & \epsilon \\ -\epsilon & 4R_9^2 \end{pmatrix}, \quad i,j \in \{d,9\}, \ \epsilon \in \mathbb{Z}$$

$$\rightarrow \text{SUSY}, \ SU(2) \text{ enhancement at } R_d = 1$$

$$\rightarrow \text{SUSY}, \ (-1)^{\epsilon} = 0 \rightarrow SU(2)$$

$$(-1)^{\epsilon} = 1 \rightarrow 2 \text{ fermions in } U(1)$$

 $S^1_E(R_0) imes \mathbb{R}^{d-1} imes T^2 imes T^{8-d}$

- $S^1_E(R_0)$: compactified euclidean time, temperature $T = \frac{1}{2\pi R_0}$
- \mathbb{R}^{d-1} : together with time, *d*-dimensional spacetime
- T^2 : torus with R_d and the Scherk-Schwarz radius R_9 , SUSY breaking scale $M = \frac{1}{2\pi R_9}$
- \mathcal{T}^{8-d} : rest of the internal space, volume ~ 1 in string units

$$\begin{aligned} (G+B)_{ij} &= \begin{pmatrix} R_d^2 & \epsilon \\ -\epsilon & 4R_9^2 \end{pmatrix}, & i,j \in \{d,9\}, \ \epsilon \in \mathbb{Z} \\ &\to \text{SUSY}, \ SU(2) \text{ enhancement at } R_d = 1 \\ &\to \text{SUSY}, \ (-1)^\epsilon = 0 \to SU(2) \\ &(-1)^\epsilon = 1 \to 2 \text{ fermions in } U(1) \end{aligned}$$

The radii R_0 and R_9 are large \rightarrow non-trivial windings are heavy and exponentially suppressed \rightarrow only the Kaluza-Klein and Matsubara towers remain

Final result only depends on the light degrees of freedom

The mass term at one loop of $\zeta = \ln (R_d)$,

$$\frac{\zeta^2 T^{d-2}}{\pi} \left[\left(\tilde{n}_{\rm F} + \tilde{n}_{\rm B} \right) \underbrace{f_{\rm T}(M/T)}_{\text{some function}} - \left(\tilde{n}_{\rm F} - \tilde{n}_{\rm B} \right) \underbrace{f_{\rm V}(M/T)}_{\text{some function}} \right],$$

depends on the additional massless states

$$(-1)^{\epsilon} = 0 \rightarrow \tilde{n}_{\mathrm{B}} f_{\mathrm{T}} + \tilde{n}_{\mathrm{B}} f_{\mathrm{V}} \quad | \quad (-1)^{\epsilon} = 1 \rightarrow \tilde{n}_{\mathrm{F}} f_{\mathrm{T}} - \tilde{n}_{\mathrm{F}} f_{\mathrm{V}}$$

The radii R_0 and R_9 are large \rightarrow non-trivial windings are heavy and exponentially suppressed \rightarrow only the Kaluza-Klein and Matsubara towers remain

Final result only depends on the light degrees of freedom

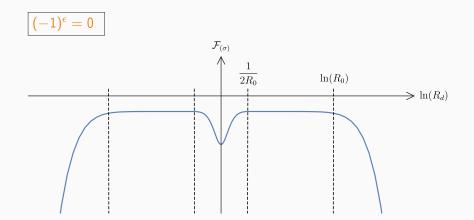
The mass term at one loop of $\zeta = \ln (R_d)$,

$$\frac{\zeta^2 T^{d-2}}{\pi} \left[\left(\tilde{n}_{\rm F} + \tilde{n}_{\rm B} \right) \underbrace{f_{\rm T}(M/T)}_{\text{some function}} - \left(\tilde{n}_{\rm F} - \tilde{n}_{\rm B} \right) \underbrace{f_{\rm V}(M/T)}_{\text{some function}} \right],$$

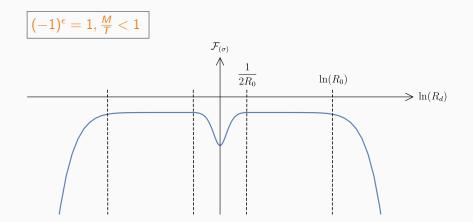
depends on the additional massless states

$$(-1)^{\epsilon} = 0 \rightarrow \tilde{n}_{\rm B} f_{\rm T} + \tilde{n}_{\rm B} f_{\rm V} \mid (-1)^{\epsilon} = 1 \rightarrow \tilde{n}_{\rm F} f_{\rm T} - \tilde{n}_{\rm F} f_{\rm V}$$

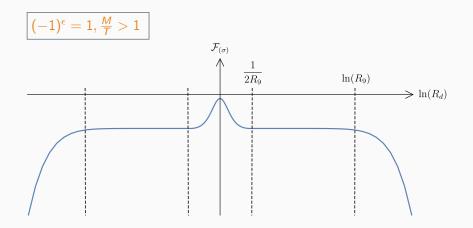
Properties of the free energy ${\cal F}$



Properties of the free energy ${\cal F}$



Properties of the free energy ${\cal F}$



- start with M < T
- start with R_d in the well

- R_d oscillates around 1 and the system is attracted by a critical solution with $M/T = \text{cst} = u_c$
- if $u_c < 1$, R_d stabilizes, the attractor is reached and corresponds to a radiation-like solution [Bourliot, C.K, H.P.'09] [Bourliot, J.E. C.K, H.P.'10]
- if $u_c > 1$, the well in the potential becomes a bump
- *R_d* becomes unstable and falls along its potential to freeze along a plateau

- start with M < T
- start with R_d in the well

- R_d oscillates around 1 and the system is attracted by a critical solution with $M/T = \text{cst} = u_c$
- if $u_c < 1$, R_d stabilizes, the attractor is reached and corresponds to a radiation-like solution [Bourliot, C.K, H.P.'09] [Bourliot, J.E. C.K, H.P.'10]
- if $u_c > 1$, the well in the potential becomes a bump
- *R_d* becomes unstable and falls along its potential to freeze along a plateau

- start with M < T
- start with R_d in the well

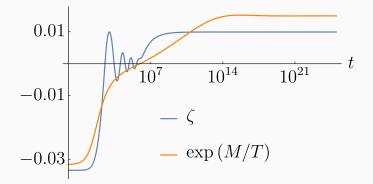
- R_d oscillates around 1 and the system is attracted by a critical solution with $M/T = \text{cst} = u_c$
- if $u_c < 1$, R_d stabilizes, the attractor is reached and corresponds to a radiation-like solution [Bourliot, C.K, H.P.'09] [Bourliot, J.E. C.K, H.P.'10]
- if $u_c > 1$, the well in the potential becomes a bump
- *R_d* becomes unstable and falls along its potential to freeze along a plateau

- start with M < T• start with R_d in the well
- R_d oscillates around 1 and the system is attracted by a critical solution with $M/T = \text{cst} = u_c$
- if u_c < 1, R_d stabilizes, the attractor is reached and corresponds to a radiation-like solution [Bourliot, С.К, Н.Р.'09] [Bourliot, J.E. С.К, Н.Р.'10]
- if $u_c > 1$, the well in the potential becomes a bump
- *R_d* becomes unstable and falls along its potential to freeze along a plateau

- start with M < T
- start with R_d in the well

- R_d oscillates around 1 and the system is attracted by a critical solution with $M/T = \text{cst} = u_c$
- if $u_c < 1$, R_d stabilizes, the attractor is reached and corresponds to a radiation-like solution [Bourliot, C.K, H.P.'09] [Bourliot, J.E. C.K, H.P.'10]
- if $u_c > 1$, the well in the potential becomes a bump
- *R_d* becomes unstable and falls along its potential to freeze along a plateau

Numerical simulation



Radiation-like attractor at late times

$$\zeta \equiv \zeta_0, \quad \Phi_{\perp} \equiv \Phi_{\perp 0}, \quad M(t) \equiv T(t) \times u_c \propto \frac{1}{a(t)},$$

where $a(t) \propto t^{\frac{2}{d}}$

Relic density evolution

Phase transition at T_{c}

Part of the spectrum "spontaneously" becomes non-relativistic and can freeze-out

Qualitatively:

$$m(T) = \left\{egin{array}{cc} 0 & ext{ for } T > T_{ ext{c}} \ m_{ ext{DM}} & ext{ for } T < T_{ ext{c}} \end{array}
ight.$$

At the transition, $u_{\rm c}=M_{\rm c}/T_{\rm c}$ but $T_{\rm c}$ is not determined

ightarrow different behaviors depending on $x_{
m c}={\it m}_{
m DM}/{\it T}_{
m c}$

Phase transition at T_c

Part of the spectrum "spontaneously" becomes non-relativistic and can freeze-out

Qualitatively:

$$m(T) = \left\{egin{array}{cc} 0 & ext{ for } T > T_{ ext{c}} \ m_{ ext{DM}} & ext{ for } T < T_{ ext{c}} \end{array}
ight.$$

At the transition, $u_{\rm c}=M_{\rm c}/T_{\rm c}$ but $T_{\rm c}$ is not determined

ightarrow different behaviors depending on $x_{
m c}={\it m}_{
m DM}/{\it T}_{
m c}$

Phase transition at T_c

Part of the spectrum "spontaneously" becomes non-relativistic and can freeze-out

Qualitatively:

$$m(T) = \left\{ egin{array}{ccc} 0 & ext{ for } T > T_{ ext{c}} \ m_{ ext{DM}} & ext{ for } T < T_{ ext{c}} \end{array}
ight.$$

At the transition, $u_{\rm c}=M_{\rm c}/T_{\rm c}$ but $T_{\rm c}$ is not determined

ightarrow different behaviors depending on $x_{
m c}={\it m}_{
m DM}/{\it T}_{
m c}$

Phase transition at T_c

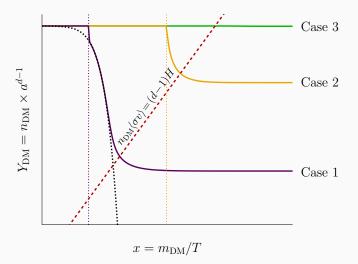
Part of the spectrum "spontaneously" becomes non-relativistic and can freeze-out

Qualitatively:

$$m(\,T) = \left\{egin{array}{ccc} 0 & ext{ for } T > T_{ ext{c}} \ m_{ ext{DM}} & ext{ for } T < T_{ ext{c}} \end{array}
ight.$$

At the transition, $u_{\rm c}=M_{\rm c}/T_{\rm c}$ but $T_{\rm c}$ is not determined

ightarrow different behaviors depending on $x_{
m c}=m_{
m DM}/T_{
m c}$



- we have built heterotic string models where a modulus is initially massive
- the universe is attracted by a first radiation-like evolution
- the properties of the modulus potential can make it switch from massive to tachyonic
- the destabilization of the modulus renders part of the light spectrum massive
- the universe then follows a second radiation-like solution
- the freshly created non-relativistic component of the universe density can play the role of dark matter, freeze-out and yield a relic density

- we have built heterotic string models where a modulus is initially massive
- the universe is attracted by a first radiation-like evolution
- the properties of the modulus potential can make it switch from massive to tachyonic
- the destabilization of the modulus renders part of the light spectrum massive
- the universe then follows a second radiation-like solution
- the freshly created non-relativistic component of the universe density can play the role of dark matter, freeze-out and yield a relic density

- we have built heterotic string models where a modulus is initially massive
- the universe is attracted by a first radiation-like evolution
- the properties of the modulus potential can make it switch from massive to tachyonic
- the destabilization of the modulus renders part of the light spectrum massive
- the universe then follows a second radiation-like solution
- the freshly created non-relativistic component of the universe density can play the role of dark matter, freeze-out and yield a relic density

- we have built heterotic string models where a modulus is initially massive
- the universe is attracted by a first radiation-like evolution
- the properties of the modulus potential can make it switch from massive to tachyonic
- the destabilization of the modulus renders part of the light spectrum massive
- the universe then follows a second radiation-like solution
- the freshly created non-relativistic component of the universe density can play the role of dark matter, freeze-out and yield a relic density

- we have built heterotic string models where a modulus is initially massive
- the universe is attracted by a first radiation-like evolution
- the properties of the modulus potential can make it switch from massive to tachyonic
- the destabilization of the modulus renders part of the light spectrum massive
- the universe then follows a second radiation-like solution
- the freshly created non-relativistic component of the universe density can play the role of dark matter, freeze-out and yield a relic density

- we have built heterotic string models where a modulus is initially massive
- the universe is attracted by a first radiation-like evolution
- the properties of the modulus potential can make it switch from massive to tachyonic
- the destabilization of the modulus renders part of the light spectrum massive
- the universe then follows a second radiation-like solution
- the freshly created non-relativistic component of the universe density can play the role of dark matter, freeze-out and yield a relic density

Thank you for your attention!