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Introduction

• Phenomenologically, supersymmetry (SUSY) must be broken

• Generically, classical flat space is destabilized

→ V1-loop ∼Md
s if hard breaking

→ If spontaneous breaking at scale M in classically flat spacey
No-scale model [Cremmer, Ferrara, Kounnas, Nanopoulos,’83]

Vtree is independent of M
V1-loop ∼Md

Unless in specific cases, still too high
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Purpose of the study

• We work in type I strings compactified on T 2 × T 4/Z2 with
spontaneously broken supersymmetry (N = 2→ 0)

• Breaking induced by a stringy Scherk-Schwarz mechanism
→ SUSY breaking scale M = 1

2R

• At one-loop, we want to have a positive potential and try to
lower its order of magnitude

• We address the question of stability

→ Tadpoles

→ Tachyonic moduli

• All this is a follow-up of a study done in d-dimensions with
N = 4→ 0 [Abel, Dudas, Lewis, Partouche,’18]
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Review of the N = 4 case

The potential is given by V1-loop = − Md
s

2(2π)d (T +K +A+M)

V1-loop ∝
∫
dτ2 Str e−πτ2m2

→ The lightest states produces the dominant contribution

⇒ Up to exponentially suppressed terms, if there is no mass
scale lower than the SUSY breaking scale M = 1

2R

V1-loop = (nF − nB)ξMd +O
(
(cMsM)

d
2 e−cMs/M

)
with ξ > 0 and cMs a large scale. nF and nB count the fermionic
and bosonic massless degrees of freedom
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Review of the N = 4 case

Now introduce Wilson lines (WL) aIr along the I-th compactified
circle for the r-th Cartan

If the WL do not introduce a mass scale lower than M , then the
potential reads [Kounnas, Partouche,’16][Coudarchet, Partouche,’18]

V1-loop = (nF−nB)ξMd+#(TRB−TRF)(aIr)2 + · · ·

with # > 0 and TRB and TRF are the Dynkin indices of the
representations RB and RF in which the bosons and fermions live

• no mass scale below M ensures no linear term ⇒ no tadpole
• "life is not easy": the more positive the potential is, the

more tachyonic it tends to be and conversely
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Review of the N = 4 case

The goal is to find models without tachyons and with nF = nB

→ Super no-scale models [Kounnas, Partouche,’15]

In the N = 4 model:

• compactification on T 10−d

• Scherk-Schwarz mechanism along the ninth direction

It is useful to visualize things in the type I’ theory, T -dualized
along the internal torus

• 210−d O(d− 1)-planes located at the corners of the "internal
box"

• 32 D(d− 1)-branes are located on the O-planes to ensure the
absence of tadpoles
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Review of the N = 4 case

p branes at

a �xed point

⇒ SO(p)

k miror branes

k branes in

the bulk

⇒ U(k)

→ a single brane at a fixed point is frozen

→ produces a trivial group factor schematically written SO(1)

6



Review of the N = 4 case

p3 at ~a3 = (1/2, 0, 0)
p4

p1
1
2 -branes at ~a1 = (0, 0, 0)

p2 at ~a2 = (0, 0, 1/2)

p7
p8

p5
p6

Direction of Scherk-Schw
arz

X̃7

X̃9

X̃8
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Review of the N = 4 case

At corner pA, 8 bosons in
the adjoint ⇒ 8pA(pA−1)

2
dof
+8× 8 dof from the closed string sector
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Review of the N = 4 case

Between corners p2A−1

and p2A, 8p2A and
8p2A−1 fermions in
the bifundamental ⇒
8p2A−1p2A dof

7



Review of the N = 4 case

It is all the information needed to find stable and super no-scale
configurations

• A lot of models have a negative potential with
(nF − nB) < 0

• Only a few have (nF − nB) = 0

• Enough O-planes must be present ⇒ d ≤ 5

• Configurations with gauge groups up to SO(5)

• Possible to reach (nF − nB) = 64 with no gauge group

• Closed string moduli are flat directions

All these algebraic computations can be recovered from an
explicit computation of the potential 8
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N = 2→ 0 model



Setup

We start from the Gimon-Polchinski-Pradisi-Sagnotti model

• Compactification on T 2 × T 4/Z2, directions (4, 5, 6, 7, 8, 9)
• The circle in the T 2 in direction 5 is used to implement the

Scherk-Schwarz breaking

The RR tadpole cancellation condition requires:

• 32 D9-branes → N

• 32 D5-branes orthogonal to the T 4 → D

No vectors running in the Möbius partition function ⇒ unitary
representations

9
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Setup

• We add discrete Wilson lines for the D9-branes and for the
orthogonal part of the D5-branes

• We add discrete positions for the D5-branes inside the T 4

→ they are at corners of the internal box

All discrete Wilson lines can be seen as discrete positions in
the correct T -dual picture

Corner labelling: In total, 24 × 22 = 64 corners

Label by ii′, where → i = 1, . . . , 16 corresponds to the T 4

→ i′ = 1, . . . , 4 corresponds to the T 2

(2i′ − 1) and 2i′ are opposite corners along the Scherk-Schwarz
direction

10
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Dynamical branes

Along the T 2:

2Dii′ branes

at �xed point

⇒ U(Dii′)

k miror branes

k branes in

the bulk

⇒ U(k)

T 2

→ branes cannot be frozen anymore because the group must be
unitary

11



Dynamical branes

Along the T 4: The orbifold cuts again half of the dof

2Dii′ branes

at �xed point

⇒ U(Dii′)

2k miror branes

2k branes in

the bulk

⇒ USp(2k)

T 4

→ Branes are always in pairs ⇒ Nii′ = 2nii′ and Dii′ = 2dii′

→ They can only move by multiple of four
11



Massless spectrum

Neuman-Neuman (NN)
and Dirichlet-Dirichlet
(DD) bosons in the ad-
joint and antisymmetric
of U(nii′) and U(dii′)

12



Massless spectrum

NN and DD fermions
in the bifundamental
of U(ni(2i′−1)) and
U(ni(2i′)) or U(di(2i′−1))
and U(di(2i′))
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Massless spectrum

ND bosons in the bifun-
damental of U(ni(2i′))
and U(dj(2i′))
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Massless spectrum

ND fermions in the bifun-
damental of U(ni(2i′−1))
and U(dj(2i′))
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Massless spectrum

From the partition function, in total we count in the open string
sector:

nopenB = 8
(
n2
ii′ + d2

ii′ +
1
2nii

′dji′ − 16
)

nopenF = 8
(
ni(2i′−1)ni(2i′) + di(2i′−1)di(2i′)

+ 1
2ni(2i

′−1)dj(2i′) + ni(2i)dj(2i′−1)
)

The closed string spectrum is the bosonic content (because
fermions are massive) of the T 4/Z2 orientifold which is in six
dimensions:

• 1 gravity multiplet gMN , B+
MN

• 1 tensor multiplet B−MN , φ −→ 92 degrees of freedom
• 20 hypermultiplets 20× 4φ 13
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Super no-scale and stability conditions

Super no-scale:(
ni(2i′−1) − ni(2i′)

)2
+
(
di(2i′−1) − di(2i′)

)2

+ 1
2
(
ni(2i′−1) − ni(2i′)

) (
dj(2i′−1) − dj(2i′)

)
= 4

Stability

N = 4→ 0 orbifold−−−−−−−−−−−→ N = 2→ 0

Vector multiplet Hypermultiplet

Vector multiplet

Twisted sector
14
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Super no-scale and stability conditions

Moduli space = Coulomb branch× Higgs branch︸ ︷︷ ︸
Wilson lines

× Twisted scalars

× Closed string moduli︸ ︷︷ ︸
WL, flat directions

Dynkin indices:

Representation R TR
SU(q), q ≥ 2 fundamental 1

fundamental 1
adjoint 2q

antisymmetric q − 2
antisymmetric q − 2

15
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Super no-scale and stability conditions

Example for U(ni(2i′))

Bosons:
• 4 in the adjoint
• 4 in the antisymmetric
• 4 in the antisymmectric
• 2

∑
j

dj(2i′) in the fund

• 2
∑
j

dj(2i′) in the fund

Fermions:
• 2× 4ni(2i′−1) in the fund
• 2× 4ni(2i′−1) in the fund
• 2

∑
j

dj(2i′−1) in the fund

• 2
∑
j

dj(2i′−1) in the fund

• We can write the same thing for U(ni(2i′−1))
• We have something similar with n↔ d for U(di(2i′)) and
U(di(2i′−1))
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Super no-scale and stability conditions

Higgs branch:

ni(2i′−1) − ni(2i′) − 1 ≥ 0 for ni(2i′−1) ≥ 2
ni(2i′) − ni(2i′−1) − 1 ≥ 0 for ni(2i′) ≥ 2

Coulomb branch:

4(ni(2i′) − ni(2i′−1)) +
16∑
j=1

(dj(2i′) − dj(2i′−1))− 4 ≥ 0 for ni(2i′) ≥ 1

4(ni(2i′−1) − ni(2i′)) +
16∑
j=1

(dj(2i′−1) − dj(2i′))− 4 ≥ 0 for ni(2i′−1) ≥ 1
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Explicit computation

Wilson lines for D9-branes and D5-branes:

aIα = 〈aIα〉+ εIα, 〈aIα〉 ∈
{

0, 1
2

}
, α = 1, . . . , 32, I = 4, . . . , 9

bIα = 〈bIα〉+ ξIα, 〈bIα〉 ∈
{

0, 1
2

}
, α = 1, . . . , 32, I = 4, . . . , 9

I is split into I = 6, . . . , 9 −→ Higgs branch
and I ′ = 4, 5 −→ Coulomb branch

No intermediate mass scale:

GIJ is the metric of the internal space,
√
G55 = R

G55 � |Gij | � G55, |G5j | �
√
G55, G55 � 1 i, j 6= 5

V1-loop = Γ( 5
2)

π
13
2
M4

∑
l5

N2l5+1(ε, ξ,G)
|2l5 + 1|5 + · · ·

18
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Explicit computation

N2l5 +1(ε, ξ, G) = 2

{
−

∑
(α,β)∈LN

(−)F cos

[
2π|2l5 + 1|

G5I′

G55

(
ε
I′

α
− εI

′

β

)]
×H 5

2

(
π|2l5 + 1|

[
(εI
α
− εI

β
)GIJ (εJ

α
− εJ

β
) + (ε4

α
− ε4

β
)2Ĝ44
] 1

2

√
G55

)
−

∑
(α,β)∈LD

(−)F cos

[
2π|2l5 + 1|

G5I′

G55

(
ξ
I′

α
− ξI

′

β

)]
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)2Ĝ44
] 1

2

√
G55

)

−
1

2

∑
(α,β)∈LN -D

(−)F cos

[
2π|2l5 + 1|

G5I′

G55

(
ε
I′

α
− εI

′

β

)]
H 5

2

(
π|2l5 + 1|

[
(ε4
α
− ε4

β
)2Ĝ44
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)2Ĝ44
] 1

2

√
G55

)

+
∑
α

cos

[
4π|2l5 + 1|

G5I′

G55
ε
I′

α

]
H 5

2

(
2π|2l5 + 1|

[
εI
α
GIJεJ

α
+
(
ε4
α

)2
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Explicit computation

Dynamical degrees of freedom:

εIr , ξ
I
r I = 6, . . . , 9, and r = 1, . . . ,

16∑
i=1

4∑
i′=1

⌊
nii′

2

⌋
εI
′
r′ , ξ

I′
r′ , I ′ = 4, 5, and r′ = 1, . . . , 16

N2l9+1 = 32π2(2l9 + 1)2
{
O
(
ε

0
, ξ

0
)

+
∑
r

(
ni(r)i′(r) − ni(r)ĩ′(r) − 1

)
ε
I
r∆IJ εJr

+
∑
r′

(
ni(r′)i′(r′) − ni(r′)ĩ′(r′) − 1 +

1
4

∑
i

(
dii′(r′) − diĩ′(r′)

))
ε
I′
r′∆

I′J′
ε
J′
r′

+
∑
r

(
di(r)i′(r) − di(r)ĩ′(r) − 1

)
ξ
I
r∆IJξ

J
r

+
∑
r′

(
di(r′)i′(r′) − di(r′)ĩ′(r′) − 1 +

1
4

∑
i

(
nii′(r′) − niĩ′(r′)

))
ξ
I′
r ∆I

′J′
ξ
J′
r′ +O

(
ε

4
, ξ

4
)}
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Twisted scalars

How to find the mass of the twisted scalars?

• The twisted scalars are not Wilson lines
• They are Neuman-Dirichlet states

Idea:

• A string computation of their one-loop two-point function
• Tedious, requires the technology of twist fields and their

correlators [Atick, Dixon, Griffin, Nemeschansky,’87]

• Extracting only the sign of the mass is maybe doable

→ maybe a field theory approach would be simpler

21
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Conclusions and outlooks



Conclusions and outlooks

• Following [Abel, Dudas, Lewis, Partouche,’18], we are looking
for super no-scale model (exponentially suppressed
potential) without moduli instabilities

• This in an open string T 4/Z2 model with broken
supersymmetry

• We expressed the super no-scale condition via the counting of
massless degrees of freedom

• We expressed stability conditions for the open string Wilson
lines masses

• The mass of the twisted scalars must still be found to obtain
the full constraints on the allowed brane configurations
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Thank you for your attention!
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Annulus partition function with discrete WL

A =
1
4

∫ ∞
0

dτ2
τ3
2

{[
(V4O4 +O4V4)

(
Nii′Njj′

P
(4)
~m+~ai−~aj

η4 +Dii′Djj′
W

(4)
~n+~ai−~aj

η4

)
+ (V4O4 −O4V4)

(
RNii′R

N
ij′ +RDii′R

D
ij′

)(2η
θ2

)2
+ 2Nii′Djj′ (O4C4 + V4S4)

(
η

θ4

)2

+ 2e4iπ~ai·~ajRNii′R
D
jj′ (O4C4 − V4S4)

(
η

θ3

)2 ]P (2)
~m′+~ai′−~aj′

η4

−
[
(S4S4 + C4C4)

(
Nii′Njj′

P
(4)
~m+~ai−~aj

η4 +Dii′Djj′
W

(4)
~n+~ai−~aj

η4

)
+ (C4C4 − S4S4)

(
RNii′R

N
ij′ +RDii′R

D
ij′

)(2η
θ2

)2
+ 2Nii′Djj′ (S4O4 + C4V4)

(
η

θ4

)2

+ 2e4iπ~ai·~ajRNii′R
D
jj′ (S4O4 − C4V4)

(
η

θ3

)2 ]P (2)
~m′+~a′s+~ai′−~aj′

η4

}



Möbius partition function with discrete WL

M = −1
4

∫ ∞
0

dτ2
τ3

2

{[
(V̂4Ô4 + Ô4V̂4)

Nii′
P

(4)
~m

η̂4 +Dii′
W

(4)
~n

η̂4


− (Nii′ +Dii′)(V̂4Ô4 − Ô4V̂4)

(
2η̂
θ̂2

)2 ]
P

(2)
~m′

η̂4

−
[
(Ĉ4Ĉ4 + Ŝ4Ŝ4)

Nii′
P

(4)
~m

η̂4 +Dii′
W

(4)
~n

η̂4


− (Nii′ +Dii′)(Ĉ4Ĉ4 − Ŝ4Ŝ4)

(
2η̂
θ̂2

)2 ]P (2)
~m′+~a′s
η̂4

}



Massless spectrum

Bosons:
V4O4

[
nii′ n̄ii′ + dii′ d̄ii′

]
+O4V4

[
nii′ (nii′ − 1)

2
+
n̄ii′ (n̄ii′ − 1)

2
+
dii′ (dii′ − 1)

2
+
d̄ii′ (d̄ii′ − 1)

2

]
+
O4C4

2
[(

1− e4iπ~ai·~aj
) (
nii′dji′ + n̄ii′ d̄ji′

)
+
(
1 + e4iπ~ai·~aj

) (
nii′ d̄ji′ + n̄ii′dji′

)]
Fermions:

C4C4

[
ni(2i′−1)n̄i(2i′) + n̄i(2i′−1)ni(2i′) + di(2i′−1)d̄i(2i′) + d̄i(2i′−1)di(2i′)

]
+ S4S4

[
ni(2i′−1)ni(2i′) + n̄i(2i′−1)n̄i(2i′) + di(2i′−1)di(2i′) + d̄i(2i′−1)d̄i(2i′)

]
+

S4O4

2

[(
1 − e

4iπ~ai·~aj
)(

ni(2i′−1)dj(2i′) + ni(2i′)dj(2i′−1) + n̄i(2i′−1)d̄j(2i′) + n̄i(2i′)d̄j(2i′−1)

)
+
(

1 + e
4iπ~ai·~aj

)(
ni(2i′−1)d̄j(2i′) + ni(2i′)d̄j(2i′−1) + n̄i(2i′−1)dj(2i′) + n̄i(2i′)dj(2i′−1)

)]
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