Vacuum stability in open string models with broken supersymmetry

Thibaut Coudarchet¹

Work in progress in collaboration with S. Abel², E. Dudas¹ and H. Partouche¹

Humboldt Kolleg Frontiers in Physics, Corfu, September 17, 2019

¹Centre de physique théorique, École Polytechnique and CNRS ² Institute for Particle Physics Phenomenology, Durham University

- Phenomenologically, supersymmetry (SUSY) must be broken
- Generically, classical flat space is destabilized

 $ightarrow \mathcal{V}_{ extsf{1-loop}} \sim M_{ extsf{s}}^d$ if hard breaking

ightarrow If spontaneous breaking at scale M in classically flat space

No-scale model [Cremmer, Ferrara, Kounnas, Nanopoulos,'83]

```
\mathcal{V}_{tree} is independent of M
```

```
\mathcal{V}_{1-\text{loop}} \sim M^d
```

- Phenomenologically, supersymmetry (SUSY) must be broken
- Generically, classical flat space is destabilized

 $ightarrow \mathcal{V}_{1\text{-loop}} \sim M_{
m s}^d$ if hard breaking

 \rightarrow If spontaneous breaking at scale M in classically flat space $\bigcup_{\rm No-scale\ model\ [Cremmer,\ Ferrara,\ Kounnas,\ Nanopoulos,'83]} \mathcal{V}_{\rm tree}\ {\rm is\ independent\ of\ }M$ $\mathcal{V}_{\rm 1-loop}\sim M^d$

- Phenomenologically, supersymmetry (SUSY) must be broken
- Generically, classical flat space is destabilized

 $ightarrow \mathcal{V}_{1-\mathrm{loop}} \sim M^d_{\mathrm{s}}$ if hard breaking

 \rightarrow If spontaneous breaking at scale M in classically flat space \downarrow No-scale model [Cremmer, Ferrara, Kounnas, Nanopoulos,'83] $\mathcal{V}_{\rm tree} \text{ is independent of } M$ $\mathcal{V}_{\rm 1-loop} \sim M^d$

- Phenomenologically, supersymmetry (SUSY) must be broken
- Generically, classical flat space is destabilized

 $ightarrow \mathcal{V}_{1-\mathrm{loop}} \sim M^d_{\mathrm{s}}$ if hard breaking

 \rightarrow If spontaneous breaking at scale M in classically flat space |

No-scale model [Cremmer, Ferrara, Kounnas, Nanopoulos,'83]

```
\mathcal{V}_{\text{tree}} is independent of M
```

```
\mathcal{V}_{\text{1-loop}} \sim M^d
```

- We work in type I strings compactified on $T^2 \times T^4/\mathbb{Z}_2$ with spontaneously broken supersymmetry $(\mathcal{N} = 2 \rightarrow 0)$
- Breaking induced by a stringy Scherk-Schwarz mechanism \rightarrow SUSY breaking scale $M = \frac{1}{2R}$
- At one-loop, we want to have a **positive potential** and try to lower its order of magnitude
- We address the question of stability
 - ightarrow Tadpoles
 - \rightarrow Tachyonic moduli
- All this is a follow-up of a study done in d-dimensions with $\mathcal{N}=4\to 0$ [Abel, Dudas, Lewis, Partouche,'18]

- We work in type I strings compactified on $T^2 \times T^4/\mathbb{Z}_2$ with spontaneously broken supersymmetry $(\mathcal{N} = 2 \rightarrow 0)$
- Breaking induced by a stringy Scherk-Schwarz mechanism \rightarrow SUSY breaking scale $M = \frac{1}{2R}$
- At one-loop, we want to have a **positive potential** and try to lower its order of magnitude
- We address the question of stability
 - ightarrow Tadpoles
 - ightarrow Tachyonic moduli
- All this is a follow-up of a study done in d-dimensions with $\mathcal{N}=4\to 0$ [Abel, Dudas, Lewis, Partouche,'18]

- We work in type I strings compactified on $T^2 \times T^4/\mathbb{Z}_2$ with spontaneously broken supersymmetry $(\mathcal{N} = 2 \rightarrow 0)$
- Breaking induced by a stringy Scherk-Schwarz mechanism \rightarrow SUSY breaking scale $M = \frac{1}{2B}$
- At one-loop, we want to have a **positive potential** and try to lower its order of magnitude
- We address the question of stability
 - $\rightarrow \mathsf{Tadpoles}$
 - $\rightarrow \mathsf{Tachyonic} \ \mathsf{moduli}$
- $\bullet\,$ All this is a follow-up of a study done in d-dimensions with $\mathcal{N}=4\to 0\,$ [Abel, Dudas, Lewis, Partouche,'18]

- We work in type I strings compactified on $T^2 \times T^4/\mathbb{Z}_2$ with spontaneously broken supersymmetry $(\mathcal{N} = 2 \rightarrow 0)$
- Breaking induced by a stringy Scherk-Schwarz mechanism \rightarrow SUSY breaking scale $M = \frac{1}{2B}$
- At one-loop, we want to have a **positive potential** and try to lower its order of magnitude
- We address the question of stability
 - $\rightarrow \mathsf{Tadpoles}$
 - $\rightarrow {\sf Tachyonic} \ {\sf moduli}$
- All this is a follow-up of a study done in d-dimensions with ${\cal N}=4\to 0$ [Abel, Dudas, Lewis, Partouche,'18]

The potential is given by $\mathcal{V}_{1\text{-loop}} = -\frac{M_s^d}{2(2\pi)^d} \left(\mathcal{T} + \mathcal{K} + \mathcal{A} + \mathcal{M}\right)$

$$\mathcal{V}_{1-\mathsf{loop}} \propto \int \mathsf{d} au_2 \operatorname{Str} e^{-\pi au_2 m^2}$$

 \rightarrow The lightest states produces the dominant contribution

 \Rightarrow Up to exponentially suppressed terms, if there is no mass scale lower than the SUSY breaking scale $M=\frac{1}{2R}$

$$\mathcal{V}_{1\text{-loop}} = (n_{\mathsf{F}} - n_{\mathsf{B}})\xi M^d + \mathcal{O}\left((cM_{\mathsf{s}}M)^{\frac{d}{2}}e^{-cM_{\mathsf{s}}/M}\right)$$

with $\xi > 0$ and cM_s a large scale. n_F and n_B count the fermionic and bosonic massless degrees of freedom The potential is given by $\mathcal{V}_{1-\text{loop}} = -\frac{M_s^d}{2(2\pi)^d} \left(\mathcal{T} + \mathcal{K} + \mathcal{A} + \mathcal{M}\right)$

$$\mathcal{V}_{1-\mathsf{loop}} \propto \int \mathsf{d} au_2 \operatorname{Str} e^{-\pi au_2 m^2}$$

\rightarrow The lightest states produces the dominant contribution

 \Rightarrow Up to exponentially suppressed terms, if there is no mass scale lower than the SUSY breaking scale $M = \frac{1}{2R}$

$$\mathcal{V}_{1\text{-loop}} = (n_{\mathsf{F}} - n_{\mathsf{B}})\xi M^d + \mathcal{O}\left((cM_{\mathsf{s}}M)^{\frac{d}{2}}e^{-cM_{\mathsf{s}}/M}\right)$$

with $\xi > 0$ and cM_s a large scale. n_F and n_B count the fermionic and bosonic massless degrees of freedom The potential is given by $\mathcal{V}_{1\text{-loop}} = -\frac{M_s^d}{2(2\pi)^d} \left(\mathcal{T} + \mathcal{K} + \mathcal{A} + \mathcal{M}\right)$

$$\mathcal{V}_{1-\mathsf{loop}} \propto \int \mathsf{d} au_2 \operatorname{Str} e^{-\pi au_2 m^2}$$

 \rightarrow The lightest states produces the dominant contribution

 \Rightarrow Up to exponentially suppressed terms, if there is no mass scale lower than the SUSY breaking scale $M=\frac{1}{2R}$

$$\mathcal{V}_{1\text{-loop}} = (n_{\mathsf{F}} - n_{\mathsf{B}})\xi M^d + \mathcal{O}\left((cM_{\mathsf{s}}M)^{\frac{d}{2}}e^{-cM_{\mathsf{s}}/M}\right)$$

with $\xi > 0$ and cM_s a large scale. n_F and n_B count the fermionic and bosonic massless degrees of freedom

Now introduce Wilson lines (WL) a_r^I along the $I\mbox{-th}$ compactified circle for the $r\mbox{-th}$ Cartan

If the WL do not introduce a mass scale lower than M, then the potential reads [Kounnas, Partouche,'16][Coudarchet, Partouche,'18]

$$\mathcal{V}_{1\text{-loop}} = (n_{\mathsf{F}} - n_{\mathsf{B}})\xi M^d + \#(T_{\mathcal{R}_{\mathsf{B}}} - T_{\mathcal{R}_{\mathsf{F}}})(a_r^I)^2 + \cdots$$

with # > 0 and $T_{\mathcal{R}_{\mathsf{B}}}$ and $T_{\mathcal{R}_{\mathsf{F}}}$ are the Dynkin indices of the representations \mathcal{R}_{B} and \mathcal{R}_{F} in which the bosons and fermions live

- no mass scale below M ensures no linear term \Rightarrow no tadpole
- "life is not easy": the more positive the potential is, the more tachyonic it tends to be and conversely

Now introduce Wilson lines (WL) a_r^I along the I-th compactified circle for the r-th Cartan

If the WL do not introduce a mass scale lower than M, then the potential reads $[{\rm Kounnas}, {\rm Partouche}, {\rm `16}][{\rm Coudarchet}, {\rm Partouche}, {\rm `18}]$

$$\mathcal{V}_{1\text{-loop}} = (n_{\mathsf{F}} - n_{\mathsf{B}})\xi M^d + \#(T_{\mathcal{R}_{\mathsf{B}}} - T_{\mathcal{R}_{\mathsf{F}}})(a_r^I)^2 + \cdots$$

with # > 0 and $T_{\mathcal{R}_{\mathsf{B}}}$ and $T_{\mathcal{R}_{\mathsf{F}}}$ are the Dynkin indices of the representations \mathcal{R}_{B} and \mathcal{R}_{F} in which the bosons and fermions live

- no mass scale below M ensures no linear term \Rightarrow no tadpole
- "life is not easy": the more positive the potential is, the more tachyonic it tends to be and conversely

Now introduce Wilson lines (WL) a_r^I along the $I\mbox{-th}$ compactified circle for the $r\mbox{-th}$ Cartan

If the WL do not introduce a mass scale lower than M, then the potential reads [Kounnas, Partouche,'16][Coudarchet, Partouche,'18]

$$\mathcal{V}_{1\text{-loop}} = (n_{\mathsf{F}} - n_{\mathsf{B}})\xi M^d + \#(T_{\mathcal{R}_{\mathsf{B}}} - T_{\mathcal{R}_{\mathsf{F}}})(a_r^I)^2 + \cdots$$

with # > 0 and $T_{\mathcal{R}_{\mathsf{B}}}$ and $T_{\mathcal{R}_{\mathsf{F}}}$ are the Dynkin indices of the representations \mathcal{R}_{B} and \mathcal{R}_{F} in which the bosons and fermions live

- no mass scale below M ensures no linear term \Rightarrow no tadpole
- "life is not easy": the more positive the potential is, the more tachyonic it tends to be and conversely

The goal is to find models without tachyons and with $n_{\rm F} = n_{\rm B}$

 \rightarrow Super no-scale models [Kounnas, Partouche,'15]

In the $\mathcal{N} = 4$ model:

- compactification on T^{10-d}
- Scherk-Schwarz mechanism along the ninth direction

It is useful to visualize things in the type I' theory, $T\mbox{-}{\rm dualized}$ along the internal torus

- $2^{10-d} O(d-1)$ -planes located at the corners of the **"internal box"**
- 32 D(d-1)-branes are located on the O-planes to ensure the absence of tadpoles

The goal is to find models without tachyons and with $n_{\rm F}=n_{\rm B}$

 \rightarrow Super no-scale models [Kounnas, Partouche,'15]

In the $\mathcal{N} = 4$ model:

- compactification on T^{10-d}
- Scherk-Schwarz mechanism along the ninth direction

It is useful to visualize things in the type I' theory, $T\mbox{-}dualized$ along the internal torus

- $2^{10-d} O(d-1)$ -planes located at the corners of the **"internal box"**
- $32 \ D(d-1)$ -branes are located on the O-planes to ensure the absence of tadpoles

The goal is to find models without tachyons and with $n_{\rm F}=n_{\rm B}$

 $\rightarrow \text{Super no-scale models [Kounnas, Partouche,'15]}$

In the $\mathcal{N} = 4$ model:

- compactification on T^{10-d}
- Scherk-Schwarz mechanism along the ninth direction

It is useful to visualize things in the type I' theory, $T\mbox{-}{\rm dualized}$ along the internal torus

- $2^{10-d} O(d-1)$ -planes located at the corners of the "internal box"
- $32 \ D(d-1)$ -branes are located on the O-planes to ensure the absence of tadpoles

- \rightarrow a single brane at a fixed point is frozen
- \rightarrow produces a trivial group factor schematically written SO(1)

Direction of Scherk-Schwarz

Direction of Scherk-Schwarz

- A lot of models have a negative potential with $(n_{\rm F}-n_{\rm B})<0$
- Only a few have $(n_{\rm F} n_{\rm B}) = 0$
 - Enough O-planes must be present $\Rightarrow d \leq 5$
 - Configurations with gauge groups up to SO(5)
- Possible to reach $(n_{\rm F} n_{\rm B}) = 64$ with no gauge group
- Closed string moduli are flat directions

- A lot of models have a negative potential with $(n_{\rm F}-n_{\rm B})<0$
- Only a few have $(n_{\rm F} n_{\rm B}) = 0$
 - Enough O-planes must be present $\Rightarrow d \leq 5$
 - Configurations with gauge groups up to SO(5)
- Possible to reach $(n_{\rm F} n_{\rm B}) = 64$ with no gauge group
- Closed string moduli are flat directions

- A lot of models have a negative potential with $(n_{\rm F}-n_{\rm B})<0$
- Only a few have $(n_{\rm F} n_{\rm B}) = 0$
 - Enough O-planes must be present $\Rightarrow d \leq 5$
 - Configurations with gauge groups up to SO(5)
- Possible to reach $(n_{\rm F} n_{\rm B}) = 64$ with no gauge group
- Closed string moduli are flat directions

- A lot of models have a negative potential with $(n_{\rm F}-n_{\rm B})<0$
- Only a few have $(n_{\rm F} n_{\rm B}) = 0$
 - Enough O-planes must be present $\Rightarrow d \leq 5$
 - Configurations with gauge groups up to SO(5)
- Possible to reach $(n_{\rm F} n_{\rm B}) = 64$ with no gauge group
- Closed string moduli are flat directions

- A lot of models have a negative potential with $(n_{\rm F}-n_{\rm B})<0$
- Only a few have $(n_{\rm F} n_{\rm B}) = 0$
 - Enough O-planes must be present $\Rightarrow d \leq 5$
 - Configurations with gauge groups up to SO(5)
- Possible to reach $(n_{\rm F} n_{\rm B}) = 64$ with no gauge group
- Closed string moduli are flat directions

$$\mathcal{N} = 2 \rightarrow 0 \text{ model}$$

Setup

We start from the Gimon-Polchinski-Pradisi-Sagnotti model

- Compactification on $T^2 \times T^4/\mathbb{Z}_2$, directions (4, 5, 6, 7, 8, 9)
- The circle in the T^2 in direction $5 \mbox{ is used to implement the Scherk-Schwarz breaking}$

The RR tadpole cancellation condition requires:

- 32 D9-branes $\rightarrow N$
- 32~D5-branes orthogonal to the $T^4 \rightarrow D$

No vectors running in the Möbius partition function \Rightarrow unitary representations

We start from the Gimon-Polchinski-Pradisi-Sagnotti model

- Compactification on $T^2 \times T^4/\mathbb{Z}_2$, directions (4, 5, 6, 7, 8, 9)
- The circle in the T^2 in direction $5 \mbox{ is used to implement the Scherk-Schwarz breaking}$

The RR tadpole cancellation condition requires:

- 32 D9-branes $\rightarrow N$
- 32~D5-branes orthogonal to the $T^4 \rightarrow D$

No vectors running in the Möbius partition function \Rightarrow unitary representations

We start from the Gimon-Polchinski-Pradisi-Sagnotti model

- Compactification on $T^2 \times T^4/\mathbb{Z}_2$, directions (4, 5, 6, 7, 8, 9)
- The circle in the T^2 in direction $5 \mbox{ is used to implement the Scherk-Schwarz breaking}$

The RR tadpole cancellation condition requires:

- 32 D9-branes $\rightarrow N$
- 32~D5-branes orthogonal to the $T^4 \rightarrow D$

No vectors running in the Möbius partition function \Rightarrow unitary representations

Setup

- We add discrete Wilson lines for the D9-branes and for the orthogonal part of the D5-branes
- We add discrete positions for the D5-branes inside the $T^4 \rightarrow$ they are at corners of the internal box

All discrete Wilson lines can be seen as discrete positions in the correct *T*-dual picture

Corner labelling: In total, $2^4 \times 2^2 = 64$ corners Label by ii', where $\rightarrow i = 1, \dots, 16$ corresponds to the T^2 $\rightarrow i' = 1, \dots, 4$ corresponds to the T^2

 $\left(2i'-1\right)$ and 2i' are opposite corners along the Scherk-Schwarz direction

Setup

- We add discrete Wilson lines for the D9-branes and for the orthogonal part of the D5-branes
- We add discrete positions for the D5-branes inside the $T^4 \rightarrow$ they are at corners of the internal box

All discrete Wilson lines can be seen as discrete positions in the correct *T*-dual picture

<u>Corner labelling:</u> In total, $2^4 \times 2^2 = 64$ corners

Label by ii', where $\to i=1,\ldots,16$ corresponds to the T^4 \to $i'=1,\ldots,4$ corresponds to the T^2

 $(2i^\prime-1)$ and $2i^\prime$ are opposite corners along the Scherk-Schwarz direction

Dynamical branes

 \rightarrow branes cannot be frozen anymore because the group must be unitary

Dynamical branes

- \rightarrow Branes are always in pairs \Rightarrow $N_{ii'}=2n_{ii'}$ and $D_{ii'}=2d_{ii'}$
- \rightarrow They can only move by multiple of four

Neuman-Neuman (NN) and Dirichlet-Dirichlet (DD) bosons in the adjoint and antisymmetric of $U(n_{ii'})$ and $U(d_{ii'})$

From the partition function, in total we count in the open string sector:

$$\begin{split} n_{\mathsf{B}}^{\mathsf{open}} &= 8 \left(n_{ii'}^2 + d_{ii'}^2 + \frac{1}{2} n_{ii'} d_{ji'} - 16 \right) \\ n_{\mathsf{F}}^{\mathsf{open}} &= 8 \Big(n_{i(2i'-1)} n_{i(2i')} + d_{i(2i'-1)} d_{i(2i')} \\ &+ \frac{1}{2} n_{i(2i'-1)} d_{j(2i')} + n_{i(2i)} d_{j(2i'-1)} \Big) \end{split}$$

The closed string spectrum is the bosonic content (because fermions are massive) of the T^4/\mathbb{Z}_2 orientifold which is in six dimensions:

- 1 gravity multiplet g_{MN} , B^+_{MN}
- 1 tensor multiplet B^-_{MN} , $\phi \longrightarrow 92$ degrees of freedor
- 20 hypermultiplets $20 \times 4\phi$

From the partition function, in total we count in the open string sector:

$$\begin{split} n_{\mathsf{B}}^{\mathsf{open}} &= 8 \left(n_{ii'}^2 + d_{ii'}^2 + \frac{1}{2} n_{ii'} d_{ji'} - 16 \right) \\ n_{\mathsf{F}}^{\mathsf{open}} &= 8 \Big(n_{i(2i'-1)} n_{i(2i')} + d_{i(2i'-1)} d_{i(2i')} \\ &+ \frac{1}{2} n_{i(2i'-1)} d_{j(2i')} + n_{i(2i)} d_{j(2i'-1)} \Big) \end{split}$$

The closed string spectrum is the bosonic content (because fermions are massive) of the T^4/\mathbb{Z}_2 orientifold which is in six dimensions:

- 1 gravity multiplet g_{MN} , B^+_{MN}
- 1 tensor multiplet B^-_{MN} , ϕ
- 20 hypermultiplets $20 \times 4\phi$

 $\longrightarrow 92~{\rm degrees}$ of freedom

Super no-scale and stability conditions

Super no-scale:

$$\left(n_{i(2i'-1)} - n_{i(2i')} \right)^2 + \left(d_{i(2i'-1)} - d_{i(2i')} \right)^2 + \frac{1}{2} \left(n_{i(2i'-1)} - n_{i(2i')} \right) \left(d_{j(2i'-1)} - d_{j(2i')} \right) = 4$$

Stability

Super no-scale and stability conditions

Super no-scale:

$$\left(n_{i(2i'-1)} - n_{i(2i')} \right)^2 + \left(d_{i(2i'-1)} - d_{i(2i')} \right)^2 + \frac{1}{2} \left(n_{i(2i'-1)} - n_{i(2i')} \right) \left(d_{j(2i'-1)} - d_{j(2i')} \right) = 4$$

Stability

Moduli space = Coulomb branch \times Higgs branch \times Twisted scalars

Wilson lines

 \times Closed string moduli

WL, flat directions

Dynkin indices:

	Representation ${\mathcal R}$	$\mathcal{T}_{\mathcal{R}}$
$SU(q), q \ge 2$	fundamental	1
	fundamental	1
	adjoint	2q
	antisymmetric	q-2
	antisymmetric	q-2

Example for $U(n_{i(2i')})$

Bosons:

- 4 in the adjoint
- 4 in the antisymmetric
- 4 in the antisymmectric
- $2\sum_{j}d_{j(2i')}$ in the fund
- $2\sum_{j}d_{j(2i')}$ in the $\overline{\mathrm{fund}}$

Fermions:

- $2 \times 4n_{i(2i'-1)}$ in the fund
- $2 \times 4n_{i(2i'-1)}$ in the fund
- $2\sum_j d_{j(2i'-1)}$ in the fund
- $2\sum_{j}d_{j(2i'-1)}$ in the $\overline{\mathrm{fund}}$
- We can write the same thing for $U(n_{i(2i'-1)})$
- We have something similar with $n\leftrightarrow d$ for $U(d_{i(2i')})$ and $U(d_{i(2i'-1)})$

Example for $U(n_{i(2i')})$

Bosons:

- 4 in the adjoint
- 4 in the antisymmetric
- 4 in the antisymmectric
- $2\sum_{j}d_{j(2i')}$ in the fund
- $2\sum_{j}d_{j(2i')}$ in the $\overline{\mathrm{fund}}$

Fermions:

- $2 \times 4n_{i(2i'-1)}$ in the fund
- $2 \times 4n_{i(2i'-1)}$ in the fund
- $2\sum_{j}d_{j(2i'-1)}$ in the fund
- $2\sum_{j}d_{j(2i'-1)}$ in the $\overline{\mathrm{fund}}$
- We can write the same thing for $U(n_{i(2i^\prime-1)})$
- We have something similar with $n\leftrightarrow d$ for $U(d_{i(2i')})$ and $U(d_{i(2i'-1)})$

Higgs branch:

$$\begin{split} n_{i(2i'-1)} &- n_{i(2i')} - 1 \geq 0 \ \ \text{for} \ \ n_{i(2i'-1)} \geq 2 \\ n_{i(2i')} &- n_{i(2i'-1)} - 1 \geq 0 \ \ \text{for} \ \ n_{i(2i')} \geq 2 \end{split}$$

Coulomb branch:

$$\begin{split} &4(n_{i(2i')} - n_{i(2i'-1)}) + \sum_{j=1}^{16} (d_{j(2i')} - d_{j(2i'-1)}) - 4 \ge 0 \quad \text{for} \quad n_{i(2i')} \ge 1 \\ &4(n_{i(2i'-1)} - n_{i(2i')}) + \sum_{j=1}^{16} (d_{j(2i'-1)} - d_{j(2i')}) - 4 \ge 0 \quad \text{for} \quad n_{i(2i'-1)} \ge 1 \end{split}$$

Higgs branch:

$$\begin{split} &n_{i(2i'-1)} - n_{i(2i')} - 1 \geq 0 \ \text{ for } \ n_{i(2i'-1)} \geq 2 \\ &n_{i(2i')} - n_{i(2i'-1)} - 1 \geq 0 \ \text{ for } \ n_{i(2i')} \geq 2 \end{split}$$

Coulomb branch:

$$\begin{split} &4(n_{i(2i')} - n_{i(2i'-1)}) + \sum_{j=1}^{16} (d_{j(2i')} - d_{j(2i'-1)}) - 4 \ge 0 \quad \text{for} \quad n_{i(2i')} \ge 1 \\ &4(n_{i(2i'-1)} - n_{i(2i')}) + \sum_{j=1}^{16} (d_{j(2i'-1)} - d_{j(2i')}) - 4 \ge 0 \quad \text{for} \quad n_{i(2i'-1)} \ge 1 \end{split}$$

Wilson lines for D9-branes and D5-branes:

$$a_{\alpha}^{\mathcal{I}} = \langle a_{\alpha}^{\mathcal{I}} \rangle + \epsilon_{\alpha}^{\mathcal{I}}, \qquad \langle a_{\alpha}^{\mathcal{I}} \rangle \in \left\{ 0, \frac{1}{2} \right\}, \quad \alpha = 1, \dots, 32, \quad \mathcal{I} = 4, \dots, 9$$
$$b_{\alpha}^{\mathcal{I}} = \langle b_{\alpha}^{\mathcal{I}} \rangle + \xi_{\alpha}^{\mathcal{I}}, \qquad \langle b_{\alpha}^{\mathcal{I}} \rangle \in \left\{ 0, \frac{1}{2} \right\}, \quad \alpha = 1, \dots, 32, \quad \mathcal{I} = 4, \dots, 9$$

$$\label{eq:I} \begin{split} \mathcal{I} \text{ is split into } I = 6, \dots, 9 & \longrightarrow \text{Higgs branch} \\ \text{ and } I' = 4, 5 & \longrightarrow \text{ Coulomb branch} \end{split}$$

No intermediate mass scale:

 $G_{\mathcal{IJ}}$ is the metric of the internal space, $\sqrt{G_{55}} = R$ $G^{55} \ll |G_{ij}| \ll G_{55}, |G_{5j}| \ll \sqrt{G_{55}}, G_{55} \gg 1 \quad i, j \neq r$

$$\mathcal{V}_{1\text{-loop}} = \frac{\Gamma(\frac{5}{2})}{\pi^{\frac{13}{2}}} M^4 \sum_{l_5} \frac{\mathcal{N}_{2l_5+1}(\epsilon,\xi,G)}{|2l_5+1|^5} + \cdots$$

Wilson lines for D9-branes and D5-branes:

$$a_{\alpha}^{\mathcal{I}} = \langle a_{\alpha}^{\mathcal{I}} \rangle + \epsilon_{\alpha}^{\mathcal{I}}, \qquad \langle a_{\alpha}^{\mathcal{I}} \rangle \in \left\{ 0, \frac{1}{2} \right\}, \quad \alpha = 1, \dots, 32, \quad \mathcal{I} = 4, \dots, 9$$
$$b_{\alpha}^{\mathcal{I}} = \langle b_{\alpha}^{\mathcal{I}} \rangle + \xi_{\alpha}^{\mathcal{I}}, \qquad \langle b_{\alpha}^{\mathcal{I}} \rangle \in \left\{ 0, \frac{1}{2} \right\}, \quad \alpha = 1, \dots, 32, \quad \mathcal{I} = 4, \dots, 9$$

$$\label{eq:I} \begin{split} \mathcal{I} \text{ is split into } I = 6, \dots, 9 & \longrightarrow \text{Higgs branch} \\ \text{ and } I' = 4, 5 & \longrightarrow \text{ Coulomb branch} \end{split}$$

No intermediate mass scale:

 $G_{\mathcal{I}\mathcal{J}}$ is the metric of the internal space, $\sqrt{G_{55}} = R$ $G^{55} \ll |G_{ij}| \ll G_{55}, |G_{5j}| \ll \sqrt{G_{55}}, G_{55} \gg 1 \quad i, j \neq 5$

$$\mathcal{V}_{1\text{-loop}} = \frac{\Gamma(\frac{5}{2})}{\pi^{\frac{13}{2}}} M^4 \sum_{l_5} \frac{\mathcal{N}_{2l_5+1}(\epsilon, \xi, G)}{|2l_5+1|^5} + \cdots$$

Wilson lines for D9-branes and D5-branes:

$$a_{\alpha}^{\mathcal{I}} = \langle a_{\alpha}^{\mathcal{I}} \rangle + \epsilon_{\alpha}^{\mathcal{I}}, \qquad \langle a_{\alpha}^{\mathcal{I}} \rangle \in \left\{ 0, \frac{1}{2} \right\}, \quad \alpha = 1, \dots, 32, \quad \mathcal{I} = 4, \dots, 9$$
$$b_{\alpha}^{\mathcal{I}} = \langle b_{\alpha}^{\mathcal{I}} \rangle + \xi_{\alpha}^{\mathcal{I}}, \qquad \langle b_{\alpha}^{\mathcal{I}} \rangle \in \left\{ 0, \frac{1}{2} \right\}, \quad \alpha = 1, \dots, 32, \quad \mathcal{I} = 4, \dots, 9$$

$$\label{eq:I} \begin{split} \mathcal{I} \text{ is split into } I = 6, \dots, 9 & \longrightarrow \text{Higgs branch} \\ \text{ and } I' = 4, 5 & \longrightarrow \text{ Coulomb branch} \end{split}$$

No intermediate mass scale:

 $G_{\mathcal{I}\mathcal{J}}$ is the metric of the internal space, $\sqrt{G_{55}} = R$ $G^{55} \ll |G_{ij}| \ll G_{55}, |G_{5j}| \ll \sqrt{G_{55}}, G_{55} \gg 1 \quad i, j \neq 5$

$$\mathcal{V}_{1\text{-loop}} = \frac{\Gamma(\frac{5}{2})}{\pi^{\frac{13}{2}}} M^4 \sum_{l_5} \frac{\mathcal{N}_{2l_5+1}(\epsilon,\xi,G)}{|2l_5+1|^5} + \cdots$$

$$\begin{split} &\mathcal{N}_{2l_{5}+1}(\epsilon,\xi,G) = 2 \Biggl\{ -\sum_{(\alpha,\beta)\in L_{N}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5l'}}{G^{55}} \left(\epsilon_{\alpha}^{l'} - \epsilon_{\beta}^{l'} \right) \right] \xrightarrow{L_{N}, L_{D}, L_{N-D} \Rightarrow \text{massless}} \\ &\times \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[(\epsilon_{\alpha}^{l} - \epsilon_{\beta}^{l}) G^{lJ} (\epsilon_{\alpha}^{J} - \epsilon_{\beta}^{J}) + (\epsilon_{\alpha}^{4} - \epsilon_{\beta}^{4})^{2} \hat{G}^{44} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \Biggr\} \xrightarrow{F}, \text{ fermion number} \\ &-\sum_{(\alpha,\beta)\in L_{N}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5l'}}{G^{55}} \left(\xi_{\alpha}^{l'} - \xi_{\beta}^{l'} \right) \right] \\ &\times \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\frac{1}{2} (\xi_{\alpha}^{l} - \xi_{\beta}^{l}) G_{IJ} (\xi_{\alpha}^{J} - \xi_{\beta}^{J}) + (\xi_{\alpha}^{4} - \xi_{\beta}^{4})^{2} \hat{G}^{44} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \Biggr\} \xrightarrow{\mathcal{H}_{\frac{5}{2}}} \left(\pi |2l_{5}+1| \frac{\left[\frac{1}{2} (\xi_{\alpha}^{l} - \xi_{\beta}^{l}) G_{IJ} (\xi_{\alpha}^{J} - \xi_{\beta}^{J}) + (\xi_{\alpha}^{4} - \xi_{\beta}^{4})^{2} \hat{G}^{44} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \\ &+ \sum_{\alpha} \cos \left[4\pi |2l_{5}+1| \frac{G^{5l'}}{G^{55}} \epsilon_{\alpha}^{l'} \right] \mathcal{H}_{\frac{5}{2}} \left(2\pi |2l_{5}+1| \frac{\left[\epsilon_{\alpha}^{l} G^{lJ} \epsilon_{\alpha}^{J} + \left(\epsilon_{\alpha}^{4} \right)^{2} \hat{G}^{44} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \\ &+ \sum_{\alpha} \cos \left[4\pi |2l_{5}+1| \frac{G^{5l'}}{G^{55}} \epsilon_{\alpha}^{l'} \right] \mathcal{H}_{\frac{5}{2}} \left(2\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \xi_{\alpha}^{l} G_{IJ} \xi_{\alpha}^{J} + \left(\xi_{\alpha}^{4} \right)^{2} \hat{G}^{44} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) - 23 \Biggr\}$$

$$\begin{split} \mathcal{N}_{2l_{s}+1}(\epsilon,\xi,G) &= 2 \Biggl\{ -\sum_{(\alpha,\beta)\in L_{N}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\epsilon_{\alpha}^{t'} - \epsilon_{\beta}^{t'} \right) \right] \\ \mathcal{L}_{N}, L_{D}, L_{N-D} \Rightarrow \text{massless} \\ &\times \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right) G^{tJ} \left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right) + \left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \Biggr| F, \text{ fermion number} \\ -\sum_{(\alpha,\beta)\in L_{D}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\xi_{\alpha}^{t'} - \xi_{\beta}^{t'} \right) \right] \\ &\times \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right) G_{IJ} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right) + \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \Biggr| \mathcal{H}_{\mathcal{V}}(z) = \frac{2}{\Gamma(\nu)} z^{\nu} K_{\nu}(2z) \\ &- \frac{1}{2} \sum_{(\alpha,\beta)\in L_{N,p}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\epsilon_{\alpha}^{t'} - \epsilon_{\beta}^{t'} \right) \right] \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t})^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \\ &+ \sum_{\alpha} \cos \left[4\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \epsilon_{\alpha}^{t'} \right] \mathcal{H}_{\frac{5}{2}} \left(2\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \zeta_{\alpha}^{t} G_{IJ} \xi_{\alpha}^{t} + \left(\frac{\epsilon_{\alpha}^{t}}{\alpha} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \\ &+ \sum_{\alpha} \cos \left[4\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \epsilon_{\alpha}^{t'} \right] \mathcal{H}_{\frac{5}{2}} \left(2\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \xi_{\alpha}^{t} G_{IJ} \xi_{\alpha}^{t} + \left(\frac{\epsilon_{\alpha}^{t}}{\alpha} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) - 23 \right\}$$

$$\begin{split} \mathcal{N}_{2l_{s}+1}(\epsilon,\xi,G) &= 2 \Biggl\{ -\sum_{(\alpha,\beta)\in L_{N}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\epsilon_{\alpha}^{t'} - \epsilon_{\beta}^{t'} \right) \right] \\ \mathcal{L}_{N}, L_{D}, L_{N-D} \Rightarrow \text{massless} \\ &\times \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right) G^{tJ} \left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right) + \left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \Biggr] \\ \mathcal{L}_{N}, L_{D}, L_{N-D} \Rightarrow \text{massless} \\ \mathcal{F}, \text{ fermion number} \\ -\sum_{(\alpha,\beta)\in L_{D}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\xi_{\alpha}^{t'} - \xi_{\beta}^{t'} \right) \right] \\ &\times \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\frac{1}{2} (\xi_{\alpha}^{t} - \xi_{\beta}^{t}) G_{IJ} (\xi_{\alpha}^{t} - \xi_{\beta}^{t}) + (\xi_{\alpha}^{t} - \xi_{\beta}^{t})^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \Biggr] \\ \mathcal{H}_{\mathcal{V}}(z) &= \frac{2}{\Gamma(\nu)} z^{\nu} K_{\nu}(2z) \\ - \frac{1}{2} \sum_{(\alpha,\beta)\in L_{N,p}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\epsilon_{\alpha}^{t'} - \epsilon_{\beta}^{t'} \right) \right] \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t})^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \\ + \sum_{\alpha} \cos \left[4\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \epsilon_{\alpha}^{t'} \right] \mathcal{H}_{\frac{5}{2}} \left(2\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \zeta_{\alpha}^{t} G_{IJ} \xi_{\alpha}^{t} + \left(\frac{\epsilon_{\alpha}^{t}}{\alpha} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) - 23 \Biggr\}$$

$$19$$

$$\begin{split} \mathcal{N}_{2l_{s}+1}(\epsilon,\xi,G) &= 2 \Biggl\{ -\sum_{(\alpha,\beta)\in L_{N}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\epsilon_{\alpha}^{t'} - \epsilon_{\beta}^{t'} \right) \right] \\ & \qquad \mathcal{L}_{N}, L_{D}, L_{N-D} \Rightarrow \text{massless} \\ & \qquad \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right) G^{tI} \left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right) + \left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}} \right) \Biggr\} \\ & \qquad \mathcal{H}_{\frac{5}{2}} \left((-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\xi_{\alpha}^{t'} - \xi_{\beta}^{t'} \right) \right] \\ & \qquad \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right) G_{II} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right) + \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}} \right) \Biggr\} \\ & \qquad \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right) G_{II} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right) + \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}} \right) \Biggr\} \\ & \qquad \mathcal{H}_{\mathcal{V}}(z) = \frac{2}{\Gamma(\nu)} z^{\nu} K_{\mathcal{V}}(2z) \\ & \qquad - \frac{1}{2} \sum_{\alpha} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\epsilon_{\alpha}^{t'} - \epsilon_{\beta}^{t'} \right) \right] \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t})^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \\ & \qquad + \sum_{\alpha} \cos \left[4\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \epsilon_{\alpha}^{t'} \right] \mathcal{H}_{\frac{5}{2}} \left(2\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \xi_{\alpha}^{t} G_{II} \xi_{\alpha}^{t} + \left(\xi_{\alpha}^{t} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) - 23 \Biggr\}$$

$$\begin{split} \mathcal{N}_{2l_{s}+1}(\epsilon,\xi,G) &= 2 \Biggl\{ -\sum_{(\alpha,\beta)\in L_{\mathcal{Y}}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\epsilon_{\alpha}^{t'} - \epsilon_{\beta}^{t'} \right) \right] \xrightarrow{L_{N}, L_{D}, L_{N-D} \Rightarrow \text{massless}} \\ &\times \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right) G^{tJ} \left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right) + \left(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t} \right)^{2} \hat{G}^{4t} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \Biggr| F, \text{ fermion number} \\ &- \sum_{(\alpha,\beta)\in L_{D}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\xi_{\alpha}^{t'} - \xi_{\beta}^{t'} \right) \right] \\ &\times \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right) G_{IJ} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right)^{2} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t} \right)^{2} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t'} \right)^{2} \left(\xi_{\alpha}^{t} - \xi_{\beta}^{t'} \right)^{2} \right) \Biggr| \mathcal{H}_{\mathcal{V}}(z) = \frac{2}{\Gamma(\nu)} z^{\nu} K_{\nu}(2z) \\ &- \frac{1}{2} \sum_{(\alpha,\beta)\in L_{N,p}} (-)^{F} \cos \left[2\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \left(\epsilon_{\alpha}^{t'} - \epsilon_{\beta}^{t'} \right) \right] \mathcal{H}_{\frac{5}{2}} \left(\pi |2l_{5}+1| \frac{\left[(\epsilon_{\alpha}^{t} - \epsilon_{\beta}^{t})^{2} \tilde{G}^{t4} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) \\ &+ \sum_{\alpha} \cos \left[4\pi |2l_{5}+1| \frac{G^{5t'}}{G^{55}} \epsilon_{\alpha}^{t'} \right] \mathcal{H}_{\frac{5}{2}} \left(2\pi |2l_{5}+1| \frac{\left[\frac{1}{2} \xi_{\alpha}^{t} G_{IJ} \xi_{\alpha}^{t} + \left(\frac{\epsilon_{\alpha}^{t}}{\alpha} \right)^{2} \tilde{G}^{t4} \right]^{\frac{1}{2}}}{\sqrt{G^{55}}} \right) - 23 \Biggr\}$$

$$19$$

Dynamical degrees of freedom:

$$\epsilon_r^I, \xi_r^I$$
 $I = 6, \dots, 9$, and $r = 1, \dots, \sum_{i=1}^{16} \sum_{i'=1}^4 \left\lfloor \frac{n_{ii'}}{2} \right\rfloor$
 $\epsilon_{r'}^{I'}, \xi_{r'}^{I'}, \quad I' = 4, 5,$ and $r' = 1, \dots, 16$

$$\begin{split} \mathcal{N}_{2l_{9}+1} &= 32\pi^{2}(2l_{9}+1)^{2} \left\{ \mathcal{O}\left(\epsilon^{0},\xi^{0}\right) + \sum_{r} \left(n_{i(r)i'(r)} - n_{i(r)i'(r)} - 1\right)\epsilon_{r}^{I}\Delta^{IJ}\epsilon_{r}^{J} \right. \\ &+ \sum_{r'} \left(n_{i(r')i'(r')} - n_{i(r')i'(r')} - 1 + \frac{1}{4}\sum_{i} \left(d_{ii'(r')} - d_{ii'(r')}\right)\right)\epsilon_{r'}^{I'}\Delta^{I'J'}\epsilon_{r'}^{J'} \\ &+ \sum_{r} \left(d_{i(r)i'(r)} - d_{i(r)i'(r)} - 1\right)\xi_{r}^{I}\Delta_{IJ}\xi_{r}^{J} \\ &+ \sum_{r'} \left(d_{i(r')i'(r')} - d_{i(r')i'(r')} - 1 + \frac{1}{4}\sum_{i} \left(n_{ii'(r')} - n_{ii'(r')}\right)\right)\epsilon_{r'}^{I'}\Delta^{I'J'}\xi_{r'}^{J'} + \mathcal{O}\left(\epsilon^{4},\xi^{4}\right)\right] \end{split}$$

Dynamical degrees of freedom:

$$\epsilon_r^I, \xi_r^I$$
 $I = 6, \dots, 9$, and $r = 1, \dots, \sum_{i=1}^{16} \sum_{i'=1}^4 \left\lfloor \frac{n_{ii'}}{2} \right\rfloor$
 $\epsilon_{r'}^{I'}, \xi_{r'}^{I'}, \quad I' = 4, 5,$ and $r' = 1, \dots, 16$

$$\mathcal{N}_{2l_9+1} = 32\pi^2 (2l_9+1)^2 \left\{ \mathcal{O}\left(\epsilon^0, \xi^0\right) + \sum_r \left(n_{i(r)i'(r)} - n_{i(r)\tilde{i'}(r)} - 1 \right) \epsilon_r^I \Delta^{IJ} \epsilon_r^J \right\}$$

$$+ \sum_{r'} \left(n_{i(r')i'(r')} - n_{i(r')\tilde{i}'(r')} - 1 + \frac{1}{4} \sum_{i} \left(d_{ii'(r')} - d_{i\tilde{i}'(r')} \right) \right) \epsilon_{r'}^{I'} \Delta^{I'J'} \epsilon_{r'}^{J'} \\ + \sum_{r} \left(d_{i(r)i'(r)} - d_{i(r)\tilde{i}'(r)} - 1 \right) \xi_{r}^{I} \Delta_{IJ} \xi_{r}^{J} \\ + \sum_{r'} \left(d_{i(r')i'(r')} - d_{i(r')\tilde{i}'(r')} - 1 + \frac{1}{4} \sum_{i} \left(n_{ii'(r')} - n_{i\tilde{i}'(r')} \right) \right) \xi_{r'}^{I'} \Delta^{I'J'} \xi_{r'}^{J'} + \mathcal{O} \left(\epsilon^{4}, \xi^{4} \right) \right)$$

How to find the mass of the twisted scalars?

- The twisted scalars are not Wilson lines
- They are Neuman-Dirichlet states

Idea:

- A string computation of their one-loop two-point function
 - Tedious, requires the technology of twist fields and their correlators [Atick, Dixon, Griffin, Nemeschansky,'87]
 - Extracting only the sign of the mass is maybe doable

 \rightarrow maybe a field theory approach would be simpler

How to find the mass of the twisted scalars?

- The twisted scalars are not Wilson lines
- They are Neuman-Dirichlet states

Idea:

- A string computation of their one-loop two-point function
 - Tedious, requires the technology of twist fields and their correlators [Atick, Dixon, Griffin, Nemeschansky,'87]
 - Extracting only the sign of the mass is maybe doable

ightarrow maybe a field theory approach would be simpler

How to find the mass of the twisted scalars?

- The twisted scalars are not Wilson lines
- They are Neuman-Dirichlet states

Idea:

- A string computation of their one-loop two-point function
 - Tedious, requires the technology of twist fields and their correlators [Atick, Dixon, Griffin, Nemeschansky,'87]
 - Extracting only the sign of the mass is maybe doable

 \rightarrow maybe a field theory approach would be simpler

- Following [Abel, Dudas, Lewis, Partouche,'18], we are looking for super no-scale model (exponentially suppressed potential) without moduli instabilities
- This in an open string T^4/\mathbb{Z}_2 model with broken supersymmetry
- We expressed the super no-scale condition *via* the counting of massless degrees of freedom
- We expressed stability conditions for the open string Wilson lines masses
- The mass of the twisted scalars must still be found to obtain the full constraints on the allowed brane configurations

- Following [Abel, Dudas, Lewis, Partouche,'18], we are looking for super no-scale model (exponentially suppressed potential) without moduli instabilities
- This in an open string T^4/\mathbb{Z}_2 model with broken supersymmetry
- We expressed the super no-scale condition *via* the counting of massless degrees of freedom
- We expressed stability conditions for the open string Wilson lines masses
- The mass of the twisted scalars must still be found to obtain the full constraints on the allowed brane configurations

- Following [Abel, Dudas, Lewis, Partouche,'18], we are looking for super no-scale model (exponentially suppressed potential) without moduli instabilities
- This in an open string T^4/\mathbb{Z}_2 model with broken supersymmetry
- We expressed the super no-scale condition *via* the counting of massless degrees of freedom
- We expressed stability conditions for the open string Wilson lines masses
- The mass of the twisted scalars must still be found to obtain the full constraints on the allowed brane configurations

- Following [Abel, Dudas, Lewis, Partouche,'18], we are looking for super no-scale model (exponentially suppressed potential) without moduli instabilities
- This in an open string T^4/\mathbb{Z}_2 model with broken supersymmetry
- We expressed the super no-scale condition *via* the counting of massless degrees of freedom
- We expressed stability conditions for the open string Wilson lines masses
- The mass of the twisted scalars must still be found to obtain the full constraints on the allowed brane configurations

- Following [Abel, Dudas, Lewis, Partouche,'18], we are looking for super no-scale model (exponentially suppressed potential) without moduli instabilities
- This in an open string T^4/\mathbb{Z}_2 model with broken supersymmetry
- We expressed the super no-scale condition *via* the counting of massless degrees of freedom
- We expressed stability conditions for the open string Wilson lines masses
- The mass of the twisted scalars must still be found to obtain the full constraints on the allowed brane configurations

Thank you for your attention!

Annulus partition function with discrete WL

$$\begin{split} \mathcal{A} &= \frac{1}{4} \int_{0}^{\infty} \frac{\mathrm{d}\tau_{2}}{\tau_{2}^{3}} \bigg\{ \left[\left(V_{4}O_{4} + O_{4}V_{4} \right) \left(N_{ii'}N_{jj'} \frac{P_{\vec{m}+\vec{a}_{i}-\vec{a}_{j}}}{\eta^{4}} + D_{ii'}D_{jj'} \frac{W_{\vec{n}+\vec{a}_{i}-\vec{a}_{j}}}{\eta^{4}} \right) \right. \\ &+ \left(V_{4}O_{4} - O_{4}V_{4} \right) \left(R_{ii'}^{N}R_{ij'}^{N} + R_{ii'}^{D}R_{ij'}^{D} \right) \left(\frac{2\eta}{\theta_{2}} \right)^{2} + 2N_{ii'}D_{jj'}(O_{4}C_{4} + V_{4}S_{4}) \left(\frac{\eta}{\theta_{4}} \right)^{2} \\ &+ 2e^{4i\pi\vec{a}_{i}\cdot\vec{a}_{j}}R_{ii'}^{N}R_{jj'}^{D}(O_{4}C_{4} - V_{4}S_{4}) \left(\frac{\eta}{\theta_{3}} \right)^{2} \right] \frac{P_{\vec{m}'+\vec{a}_{i'}-\vec{a}_{j'}}^{(2)}}{\eta^{4}} \\ &- \left[\left(S_{4}S_{4} + C_{4}C_{4} \right) \left(N_{ii'}N_{jj'} \frac{P_{\vec{m}+\vec{a}_{i}-\vec{a}_{j}}^{(4)}}{\eta^{4}} + D_{ii'}D_{jj'} \frac{W_{\vec{n}+\vec{a}_{i}-\vec{a}_{j}}}{\eta^{4}} \right) \right. \\ &+ \left(C_{4}C_{4} - S_{4}S_{4} \right) \left(R_{ii'}^{N}R_{ij'}^{N} + R_{ii'}^{D}R_{ij'}^{D} \right) \left(\frac{2\eta}{\theta_{2}} \right)^{2} + 2N_{ii'}D_{jj'}(S_{4}O_{4} + C_{4}V_{4}) \left(\frac{\eta}{\theta_{4}} \right)^{2} \\ &+ 2e^{4i\pi\vec{a}_{i}\cdot\vec{a}_{j}}R_{ii'}^{N}R_{jj'}^{D}(S_{4}O_{4} - C_{4}V_{4}) \left(\frac{\eta}{\theta_{3}} \right)^{2} \right] \frac{P_{\vec{m}'+\vec{a}_{i'}-\vec{a}_{j'}}^{(2)}}{\eta^{4}} \bigg\} \end{split}$$

Möbius partition function with discrete WL

$$\mathcal{M} = -\frac{1}{4} \int_0^\infty \frac{\mathrm{d}\tau_2}{\tau_2^3} \Biggl\{ \Biggl[(\hat{V}_4 \hat{O}_4 + \hat{O}_4 \hat{V}_4) \left(N_{ii'} \frac{P_{\vec{m}}^{(4)}}{\hat{\eta}^4} + D_{ii'} \frac{W_{\vec{n}}^{(4)}}{\hat{\eta}^4} \right) \\ - (N_{ii'} + D_{ii'}) (\hat{V}_4 \hat{O}_4 - \hat{O}_4 \hat{V}_4) \left(\frac{2\hat{\eta}}{\hat{\theta}_2} \right)^2 \Biggr] \frac{P_{\vec{m}'}^{(2)}}{\hat{\eta}^4} \\ - \Biggl[(\hat{C}_4 \hat{C}_4 + \hat{S}_4 \hat{S}_4) \left(N_{ii'} \frac{P_{\vec{m}}^{(4)}}{\hat{\eta}^4} + D_{ii'} \frac{W_{\vec{n}}^{(4)}}{\hat{\eta}^4} \right) \\ - (N_{ii'} + D_{ii'}) (\hat{C}_4 \hat{C}_4 - \hat{S}_4 \hat{S}_4) \left(\frac{2\hat{\eta}}{\hat{\theta}_2} \right)^2 \Biggr] \frac{P_{\vec{m}' + \vec{a}'_s}^{(2)}}{\hat{\eta}^4} \Biggr\}$$
Bosons:

$$\begin{split} &V_4O_4\left[n_{ii'}\bar{n}_{ii'} + d_{ii'}\bar{d}_{ii'}\right] \\ &+ O_4V_4\left[\frac{n_{ii'}(n_{ii'} - 1)}{2} + \frac{\bar{n}_{ii'}(\bar{n}_{ii'} - 1)}{2} + \frac{d_{ii'}(d_{ii'} - 1)}{2} + \frac{\bar{d}_{ii'}(\bar{d}_{ii'} - 1)}{2}\right] \\ &+ \frac{O_4C_4}{2}\left[\left(1 - e^{4i\pi\vec{a}_i\cdot\vec{a}_j}\right)\left(n_{ii'}d_{ji'} + \bar{n}_{ii'}\bar{d}_{ji'}\right) + \left(1 + e^{4i\pi\vec{a}_i\cdot\vec{a}_j}\right)\left(n_{ii'}\bar{d}_{ji'} + \bar{n}_{ii'}d_{ji'}\right)\right] \end{split}$$

Fermions:

$$\begin{split} &C_4 C_4 \left[n_{i(2i'-1)} \bar{n}_{i(2i')} + \bar{n}_{i(2i'-1)} n_{i(2i')} + d_{i(2i'-1)} \bar{d}_{i(2i')} + \bar{d}_{i(2i'-1)} d_{i(2i')} \right] \\ &+ S_4 S_4 \left[n_{i(2i'-1)} n_{i(2i')} + \bar{n}_{i(2i'-1)} \bar{n}_{i(2i')} + d_{i(2i'-1)} d_{i(2i')} + \bar{d}_{i(2i'-1)} \bar{d}_{i(2i')} \right] \\ &+ \frac{S_4 O_4}{2} \left[\left(1 - e^{4i\pi \vec{a}_i \cdot \vec{a}_j} \right) \left(n_{i(2i'-1)} d_{j(2i')} + n_{i(2i')} d_{j(2i'-1)} + \bar{n}_{i(2i'-1)} \bar{d}_{j(2i')} + \bar{n}_{i(2i')} \bar{d}_{j(2i'-1)} \right) \right) \\ &+ \left(1 + e^{4i\pi \vec{a}_i \cdot \vec{a}_j} \right) \left(n_{i(2i'-1)} \bar{d}_{j(2i')} + n_{i(2i')} \bar{d}_{j(2i'-1)} + \bar{n}_{i(2i'-1)} d_{j(2i')} + \bar{n}_{i(2i')} d_{j(2i'-1)} \right) \right] \end{split}$$